next previous
Up: Abstract

A&A Supplement series, Vol. 121, February 1997, 379-392

Received February 12; accepted June 7, 1996

Deriving object visibilities from interferograms obtained with a fiber stellar interferometer

V. Coudé du Forestotex2html_wrap2734tex2html_wrap_inline2720gif - S. Ridgwaytex2html_wrap2736 - J.-M. Mariottitex2html_wrap2738

Send offprint request: V. Coudé du Foresto (foresto@hplyot.obspm.fr).

tex2html_wrap2740  Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
tex2html_wrap2742  Kitt Peak National Observatory, National Optical Astronomy Observatories, P.O. Box 26732, Tucson, AZ 85726, U.S.A.gif
tex2html_wrap2744  Observatoire de Paris, DESPA, 5 place J. Janssen, 92195 Meudon Cedex, France

Abstract:

A method is given for extracting object visibilities from data provided by a long baseline interferometer, where the beams are spatially filtered by single-mode fibers and interferograms are obtained as scans around the zero optical pathlength difference. It is shown how the signals can be corrected from the wavefront perturbations caused by atmospheric turbulence. If the piston perturbations are also removed, then the corrected data contain both spatial and spectral information on the source (double Fourier interferometry). When the piston cannot be removed, object phase and spectral information are lost, and the observable (free of detector noise bias) is the squared modulus of the coherence factor, integrated over the optical bandpass. In a fiber interferometer this quantity leads to very accurate object visibility measurements because the transfer function does not involve an atmospheric term. The analysis also holds for a more classical pupil plane interferometer which does not take advantage of the spatial filtering capability of single-mode fibers. In that case however, the transfer function includes a turbulence term that needs to be calibrated by statistical methods.

keywords: instrumentation: interferometers -- methods: data analysis -- atmospheric effects -- infrared: general -- techniques: interferometry





Copyright by the European Southern Observatory (ESO)
web@ed-phys.fr