next previous
Up: Abstract


Astron. Astrophys. Suppl. Ser. 131, 167-180

Bayesian image reconstruction with space-variant noise suppression

J. Núñez1 - J. Llacer2

Send offprint request: J. Núñez


1 - Departament d'Astronomia i Meteorologia, Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona and Observatorio Fabra, Barcelona, Spain
e-mail: jorge@fajnm1.am.ub.es
2 - Engineering Division, Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720, U.S.A.
e-mail: j_llacer@lbl.gov

Received March 26, 1997; accepted February 5, 1998

Abstract:

In this paper we present a Bayesian image reconstruction algorithm with entropy prior (FMAPE) that uses a space-variant hyperparameter. The spatial variation of the hyperparameter allows different degrees of resolution in areas of different statistical characteristics, thus avoiding the large residuals resulting from algorithms that use a constant hyperparameter. In the first implementation of the algorithm, we begin by segmenting a Maximum Likelihood Estimator (MLE) reconstruction. The segmentation method is based on using a wavelet decomposition and a self-organizing neural network. The result is a predetermined number of extended regions plus a small region for each star or bright object. To assign a different value of the hyperparameter to each extended region and star, we use either feasibility tests or cross-validation methods. Once the set of hyperparameters is obtained, we carried out the final Bayesian reconstruction, leading to a reconstruction with decreased bias and excellent visual characteristics. The method has been applied to data from the non-refurbished Hubble Space Telescope. The method can be also applied to ground-based images.

Key words: techniques: image processing -- methods: data analysis



 
next previous
Up: Abstract

Copyright The European Southern Observatory (ESO)