In Table 1 the aspect data for each asteroid, the longitude and latitude
relative to the ecliptic, the solar phase angle, the geocentric, r, and
heliocentric, ,
distances, are listed for every day of observation.
Date | Long | Lat | Phase | r | ![]() |
(0 UT) | (1950) | (1950) | (deg) | (AU) | (AU) |
10 Hygiea | |||||
22 09 1996 | 20.85 | 5.34 | 6.60 | 2.43850 | 3.38599 |
04 10 1996 | 18.63 | 5.42 | 2.89 | 2.40571 | 3.39552 |
07 10 1996 | 18.04 | 5.43 | 2.10 | 2.40397 | 3.39785 |
08 10 1996 | 17.84 | 5.43 | 1.89 | 2.40398 | 3.39862 |
241 Germania | |||||
04 10 1996 | 18.94 | 8.25 | 4.23 | 1.80108 | 2.78756 |
07 10 1996 | 18.32 | 8.24 | 3.43 | 1.79872 | 2.78908 |
08 10 1996 | 18.11 | 8.23 | 3.23 | 1.79848 | 2.78959 |
509 Iolanda | |||||
04 10 1996 | 21.52 | 8.22 | 4.90 | 1.81454 | 2.79611 |
07 10 1996 | 20.88 | 7.99 | 3.90 | 1.80876 | 2.79640 |
08 10 1996 | 20.66 | 7.91 | 3.60 | 1.80740 | 2.79650 |
These observations were carried out during three nights of October 1996
when the asteroids were very close to the opposition.
10 Hygiea was observed one additional night of September when the solar phase
angle of this asteroid was 4
greater than its average
phase angle corresponding to
October observations. The absolute magnitudes obtained during September for
10 Hygiea are about
greater than those obtained during October.
In Table 2
the mean reduced magnitudes observed for each uvby
Strömgren filter,
,
the observed Strömgren colour indices, b-y and u-b, and the
average phase angle of October observations,
,
for each asteroid, are presented.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
(mag) | (mag) | (mag) | (mag) | (mag) | (mag) |
10 Hygiea |
(
![]() ![]() ![]() |
241 Germania | (
![]() ![]() ![]() |
509 Iolanda | (
![]() ![]() ![]() |
y 5.64 ![]() |
V 5.64 ![]() |
y 7.98 ![]() |
V 7.98 ![]() |
y 9.04 ![]() |
V 9.04 ![]() |
b 6.05 |
B 6.30 ![]() |
b 8.38 ![]() |
B 8.62 ![]() |
b 9.48 ![]() |
B 9.74 ![]() |
v 6.71 |
U 6.61 ![]() |
v 9.03 ![]() |
U 8.88 ![]() |
v 10.22 ![]() |
U 10.17 ![]() |
u 7.84 |
u 10.09 ![]() |
u 11.42 ![]() |
|||
b-y 0.41 |
B-V 0.66 ![]() |
b-y 0.40 ![]() |
B-V 0.64 ![]() |
b-y 0.44 ![]() |
B-V 0.70 ![]() |
u-b 1.78 |
U-B 0.31 ![]() |
u-b 1.71 ![]() |
U-B 0.26 ![]() |
u-b 1.94 ![]() |
U-B 0.43 ![]() |
These Strömgren values are
transformed into
the UBV Johnson system by using the equations of Warren & Hesser
(1977) to transform the Strömgren b-y and u-b
colour indices to Johnson B-V and U-B colour
indices.
The Johnson magnitudes and colour
indices obtained,
,
are also shown in Table 2.
Rotational synodic periods
for each asteroid have been obtained performing
analysis of frequencies on our data using the method described in
Rodríguez et al. (1998).
Synodic periods of
,
and
,
and estimated errors, after optimizing these periods using a nonlinear
least squares fit, of
,
and
are obtained
for 10 Hygiea, 241 Germania and 509 Iolanda, respectively.
Then, synodic periods of 27.63
0.02 hours for 10 Hygiea,
15.51
0.01 hours for 241 Germania and 12.72
0.02 hours for 509
Iolanda are derived from these observations.
![]() |
Figure 1: Lightcurves and colour indices of 10 Hygiea in rotational phase. The 0 phase time corresponds to JD 2450349.4941 corrected for light-time |
Figures 1, 3, and 6 show the composite lightcurves derived
using these synodic periods for each asteroid.
The uvby
magnitudes and the
b-y, v-b and u-b colour indices versus the rotational phase are
shown in these figures.
The lightcurves obtained for each asteroid show regular shapes
with two maxima and two minima per rotational cycle.
We have not applied any phase correction to these magnitudes, however the
magnitudes
measured for 10 Hygiea on September 22, when the solar phase angle was
greater, have been shifted by an additional constant of
in all the uvby filters.
![]() |
Figure 2:
Amplitude obtained considering 10 Hygiea as a triaxial ellipsoid
with a/b=1.31 and b/c=1.2. Amplitudes observed and corrected by a phase factor
![]() |
![]() |
Figure 3: Lightcurves and colour indices of 241 Germania in rotational phase. The 0 phase time corresponds to JD 2450361.3180 corrected for light-time |
![]() |
Figure 4: Lightcurves and colour indices of 241 Germania in rotational phase. The 0 phase time corresponds to JD 2448125.5747 corrected for light-time |
Poles and shapes for these asteroids have been determined
using the Epoch/Amplitude method
(see Taylor 1979; Magnusson
1986; Magnusson et al. 1989;
Michalowski & Velichko 1990; De Angelis 1993).
We used the method to resolve the Epoch and Amplitude equations as it was
explained in López-González &
Rodríguez (1999).
In this way we obtain the most likely solution for
the sidereal period of rotation of the asteroid,
Tsid, the pole coordinates of the asteroid,
and
,
the ratios of the symmetry axes of the asteroid
(considered as a triaxial ellipsoid of axis
rotating about their shortest axis), a/b and b/c, and a phase coefficient
that takes into account the phase angle effects on the amplitude of the
lightcurves,
.
Lightcurve data reported in the literature together with lightcurves obtained here for these asteroids have been used in the analysis. Most of the lightcurves used in this work can be found in the Asteroid Photometric Catalogue by Lagerkvist et al. (1987a, 1988, 1992a).
Copyright The European Southern Observatory (ESO)