Integrating the differential rate
over the azimuth angle,
,
and dividing the resulting rate by the current density
(
)
we obtain the one-photon
annihilation cross-section (for any pz):
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
(20) |
If we suppose that
and
are found in the lowest Landau state
(
)
and
,
so
,
then the photon is
emitted perpendicular to the magnetic field (
). We
allow any polarization of the photon. Then
the above expression for the cross-section reduces to:
![]() |
|||
![]() |
|||
![]() |
(21) |
![]() |
= | 0 | |
![]() |
= | ![]() |
|
![]() |
= | ![]() |
|
= | ![]() |
(22) |
If we take the case of an electron with zero longitudinal momentum (pz = 0), and sum over polarization, then we find:
![]() |
= | ![]() |
(23) |
From the conservation laws:
and
,
we find the expression for the longitudinal component
of the
momentum:
![]() |
= | ![]() |
(24) |
![]() |
= | ![]() |
(25) |
If we average over the polarization of the
and
in Eq. (20)
above, we obtain:
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
(26) |
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
|||
![]() |
(27) |
Copyright The European Southern Observatory (ESO)