next previous
Up: A survey of blue


4 The list

Thus, all H$\alpha $ excess objects were divided into sequences on the basis of their morphological features: stellar (s), diffuse (d), bubble-type (b). Faint and compact objects that remained unclassified were labeled by c. Besides this, there were objects for which it turned out to be impossible to determine the size because of their closeness to bright HII regions. As a rule, in H$\alpha $ images, these objects are seen as a hump near a large nebula, i.e. they are located on a steep background gradient. In the methods we used, their size would often be underestimated or formally equal to zero. We denote such objects as zs. As a result there were isolated 81 stars, 154 diffuse nebulae, 180 bubbles, 117 objects of type c and 17 zs objects. The division between s and d, d and b objects have to be considered as an average, but not precise, because there are some objects located between the sequences and the objects may obviously have not a simple ${\rm H}\alpha $ morphology.


   
Table 1: Selected emission objects
n n(IFM) mV S ${d(\hbox{$^{\prime\prime}$ })}$ Type n n(IFM) mV S ${d(\hbox{$^{\prime\prime}$ })}$ Type
                       
1 8 18.80 3.7 3.0 b 41 208 17.00 10.6   s
2 11 18.50 6.6   c 42 210 18.47 6.0 4.0 d
3 18 18.40 5.7 2.8 d 43 211 17.97 4.6 3.2 b
4 22 18.60 2.9 3.2 b 44 215 18.60 13.4 3.1 d
5 42 18.70 52   s 45 216 18.81 42 6.0 b
6 60 19.10 34 4.6 d 46 222 17.70 5.9 3.0 d
7 61 19.20 68 6.9 b 47 227 18.90 2.5 3.9 b
8 65 16.67 7.5   s 48 228 18.35 5.8 4.2 b
9 68 19.30 10.0 5.4 b 49 240 17.20 32 4.4 d
10 71 19.00 5.2 3.2 b 50 246 18.70 2.1 5.5 b
11 72 18.65 23 3.7 d 51 248 18.39 2.6   c
12 87 18.00 6.4 3.1 d 52 263 17.81 13.5 3.7 d
13 90 18.31 3.2   c 53 268 17.30 42 6.7 d
14 99 18.58 3.2 2.7 b 54 272 18.10 4.8 3.3 b
15 101 18.24 6.5   c 55 276 16.80 7.4 3.9 d
16 104 18.70 3.2   c 56 282 19.10 8.7   c
17 109 18.80 14.3   s 57 284 19.19 7.1 3.0 b
18 116 18.20 16.2   s 58 285 19.42 6.0   c
19 119 18.60 12.9 3.1 d 59 298 18.60 24   s
20 120 18.70 5.8   c 60 301 16.40 4.0 4.1 d
21 125 19.22 12.5   s 61 329 18.80 1.9   c
22 131 17.80 61 5.6 d 62 337 19.10 2.0   c
23 136 19.50 11.6 3.3 d 63 341 19.40 6.2   c
24 137 17.79 390   zs 64 343 17.83 6.5 5.7 b
25 139 17.70 10.8   s 65 344 18.90 12.4 3.8 d
26 140 18.70 3.6 3.8 b 66 350 19.02 3.0 2.7 b
27 141 18.80 8.4 2.6 d 67 352 19.30 83 9.0 d
28 143 18.40 5.8   c 68 361 19.00 18.6   s
29 147 18.40 1.9 3.5 b 69 366 18.40 2.9 4.0 b
30 156 19.48 2.8 3.1 b 70 368 17.80 15.9   s
31 162 18.91 5.4 4.5 b 71 369 19.38 17.7 3.7 d
32 168 18.40 13.2 4.8 b 72 372 19.10 7.8   s
33 169 17.71 5.6 2.9 d 73 374 17.12 11.0   s
34 172 19.00 2.1 2.8 b 74 382 18.33 11.2 4.4 b
35 174 18.79 6.7 4.8 b 75 383 19.19 4.6   c
36 188 17.70 2.9   c 76 386 17.30 8.3   s
37 192 17.61 10.0   s 77 392 19.30 7.3   c
38 200 19.48 3.8 4.9 b 78 401 17.70 2.6 3.0 d
39 202 19.27 82 6.2 d 79 403 19.47 40 5.3 d
40 205 19.49 2.5 4.1 b 80 404 16.90 14.1   s


 
Table 1: continued
n n(IFM) mV S ${d(\hbox{$^{\prime\prime}$ })}$ Type n n(IFM) mV S ${d(\hbox{$^{\prime\prime}$ })}$ Type
                       
81 406 19.36 5.6 3.9 b 121 548 16.80 15.3   s
82 408 19.10 9.3   c 122 550 19.20 84   s
83 409 18.68 26 5.2 b 123 555 18.80 2.2 3.3 b
84 411 18.00 10.3 3.4 d 124 559 17.72 5.3   s
85 412 18.60 29 5.1 d 125 561 17.69 5.0   s
86 417 19.21 3.3 3.1 b 126 571 17.58 19.9   s
87 420 19.42 4.5   c 127 574 19.16 6.1   c
88 422 19.01 25   s 128 578 19.10 9.2 4.4 d
89 424 19.00 68 7.1 d 129 584 18.97 3.1 3.1 b
90 425 19.34 8.9 4.2 d 130 589 18.22 20.0 5.8 d
91 426 17.20 5.9 3.2 d 131 592 18.60 24.8 5.1 d
92 431 17.99 2.3   c 132 607 19.42 4.7   c
93 432 19.21 3.2   c 133 609 18.66 5.6 5.5 b
94 435 17.60 6.8 3.5 d 134 611 17.00 8.9 5.3 d
95 442 18.50 2.1 3.3 b 135 614 17.20 9.3   s
96 444 17.28 9.8   s 136 619 17.40 9.3 4.1 d
97 449 18.78 4.9 4.8 b 137 629 19.40 36 7.3 d
98 452 19.17 4.1 4.3 b 138 630 18.70 6.7 3.6 d
99 454 18.90 2.8 5.3 b 139 633 19.30 117 10.5 d
100 455 18.39 31 7.4 b 140 637 18.75 4.4 3.6 b
101 465 18.68 2.1 3.4 b 141 639 18.40 13.7 4.9 d
102 466 19.33 22.9 5.5 b 142 644 17.90 4.2 4.1 b
103 467 18.40 2.8   c 143 646 19.11 7.3 3.5 d
104 471 19.10 170   zs 144 648 18.10 2.7 3.5 b
105 482 18.96 28 5.7 b 145 651 19.17 3.9 3.2 b
106 488 19.20 61 6.5 d 146 653 18.90 11.7   s
107 490 18.22 2.2   c 147 656 19.42 7.5   c
108 492 18.95 5.4 5.2 b 148 663 19.46 2.8 3.1 b
109 493 19.40 18.6 7.7 b 149 664 18.50 20.3 5.9 d
110 500 18.10 2.7 3.2 b 150 666 19.34 30   s
111 505 18.15 3.1   c 151 667 19.00 4.1 4.5 b
112 511 18.70 13.2 4.5 d 152 669 17.70 4.2   c
113 515 16.50 2.1 4.0 d 153 675 19.40 11.4   s
114 526 18.70 4.9 3.6 b 154 676 18.50 2.6   c
115 527 18.62 2.6   c 155 677 19.50 4.4   c
116 532 18.85 14.0 7.7 b 156 678 18.70 42 9.3 b
117 533 18.60 250   zs 157 689 19.20 2.8   c
118 536 19.43 2.4   c 158 697 18.17 2.7 3.8 b
119 537 18.60 7.7 4.3 b 159 699 18.00 17.4 4.9 b
120 544 17.90 8.2 4.2 d 160 701 16.99 34 4.9 d


 
Table 1: continued
n n(IFM) mV S ${d(\hbox{$^{\prime\prime}$ })}$ Type n n(IFM) mV S ${d(\hbox{$^{\prime\prime}$ })}$ Type
                       
161 705 19.00 19.8 4.5 d 201 821 19.00 7.8 4.1 d
162 710 19.00 10.7 4.9 d 202 823 18.80 10.7 4.9 b
163 712 17.68 63 7.2 d 203 825 18.10 6.4 4.3 b
164 714 18.84 3.7 3.4 d 204 830 19.10 5.1   zs
165 718 18.40 8.5 3.9 d 205 836 19.00 6.9 4.4 b
166 719 16.90 9.8 4.8 d 206 837 18.90 8.2   zs
167 727 16.80 16.2   s 207 839 16.70 3.6   zs
168 730 18.70 13.5 4.9 d 208 842 18.80 13.1   zs
169 734 18.40 6.0   c 209 844 19.20 3.6   c
170 735 19.00 61 7.9 d 210 853 19.30 9.7 4.5 d
171 736 16.40 15.5 5.9 d 211 856 17.90 8.8 3.3 d
172 740 18.80 6.9 4.2 b 212 861 18.90 53 8.5 d
173 743 15.87 3.2   s 213 863 18.60 4.0 2.9 d
174 747 19.36 60 8.7 d 214 867 18.84 3.9   c
175 749 19.30 7.6   zs 215 868 18.30 12.0 4.4 d
176 750 16.77 6.7   s 216 870 19.00 36.3 8.9 b
177 751 19.40 7.3   c 217 874 18.66 8.9 4.3 d
178 755 17.84 3.0 3.5 b 218 875 18.90 8.7 5.0 b
179 757 17.20 9.7 4.8 d 219 878 18.10 5.7   s
180 760 18.70 2.0   c 220 879 18.60 2.4 3.5 b
181 761 18.20 2.2   c 221 884 18.22 16.8 4.7 d
182 771 18.10 2.8   c 222 895 18.48 3.1   c
183 772 19.01 38 6.4 d 223 905 18.60 6.6 4.4 b
184 774 18.90 8.5 4.6 b 224 910 19.30 14.9 5.3 d
185 775 19.10 2.4   c 225 913 19.20 2.7 3.4 b
186 779 18.20 6.0   c 226 920 17.50 11.9 5.0 d
187 780 18.60 6.3 5.0 b 227 923 18.40 9.7 4.0 d
188 781 18.91 4.0 3.5 b 228 926 18.30 240 9.3 d
189 783 19.40 2.1   c 229 933 19.20 6.2   zs
190 784 18.80 3.3 3.2 b 230 935 19.20 15.6   s
191 786 18.30 6.3   c 231 936 19.10 2.9   c
192 789 19.20 27.5 6.2 d 232 938 17.50 7.0 4.0 d
193 790 18.85 2.1   c 233 948 18.38 6.0   s
194 791 18.80 5.2   zs 234 953 19.40 3.7   c
195 795 18.50 3.3   c 235 956 17.90 10.6   s
196 799 19.00 57.8 7.6 d 236 965 19.31 2.4   c
197 803 19.13 2.3   c 237 976 18.30 6.1 4.2 b
198 805 17.10 33.2   s 238 987 19.29 7.7 4.4 b
199 815 19.00 6.0 4.1 b 239 990 19.00 48   s
200 818 19.20 5.0 3.3 d 240 994 19.43 3.2 3.8 b


 
Table 1: continued
n n(IFM) mV S ${d(\hbox{$^{\prime\prime}$ })}$ Type n n(IFM) mV S ${d(\hbox{$^{\prime\prime}$ })}$ Type
                       
241 995 19.49 5.3   c 281 1130 19.20 3.3 4.5 b
242 999 16.46 2.1   s 282 1131 18.30 19.8 5.8 d
243 1001 18.73 11.5   s 283 1142 18.10 15.6   s
244 1002 16.20 2.9 4.2 d 284 1145 18.02 5.1 4.1 b
245 1003 18.20 2.5   c 285 1147 18.89 7.7 5.5 b
246 1004 16.40 6.2 5.3 d 286 1153 18.90 4.6   c
247 1005 19.10 9.4   s 287 1156 18.00 19.8 6.2 d
248 1006 17.60 5.6 3.5 d 288 1157 18.70 29 6.3 d
249 1010 19.38 2.4 3.1 b 289 1161 18.80 5.4 3.5 d
250 1011 19.20 2.7 2.9 b 290 1163 17.50 6.6 3.1 d
251 1013 19.20 19.6 5.7 d 291 1166 19.29 3.1   c
252 1018 18.40 3.1   c 292 1176 19.09 5.9   c
253 1020 17.90 25   s 293 1177 18.30 12.4 3.9 d
254 1022 18.80 2.8   c 294 1179 18.70 32 6.4 d
255 1024 17.70 28   s 295 1194 19.00 3.7 3.1 b
256 1026 16.60 17.5 5.5 d 296 1203 18.50 7.0 4.1 b
257 1030 19.30 5.1   c 297 1211 18.60 91 9.4 d
258 1031 19.30 9.0   zs 298 1212 19.00 5.5   c
259 1035 19.38 29 5.5 d 299 1215 19.50 14.9 4.7 d
260 1038 18.50 4.1   c 300 1216 18.30 3.3   c
261 1042 19.47 18.7   s 301 1219 18.50 10.1 3.9 d
262 1051 19.50 5.0   c 302 1222 19.23 33 4.4 d
263 1053 18.44 2.8 3.3 b 303 1228 18.70 6.5 4.5 b
264 1055 18.50 2.4 4.3 b 304 1242 18.39 3.7   c
265 1061 16.40 7.9   s 305 1248 19.40 9.8   c
266 1066 19.40 3.8   c 306 1249 18.00 7.7 5.8 b
267 1070 18.10 2.2 3.4 b 307 1254 17.71 5.8 3.7 d
268 1080 18.00 3.1   c 308 1263 19.50 13.8 4.8 d
269 1089 19.10 31   s 309 1265 17.81 7.1 3.8 d
270 1090 18.50 6.8   zs 310 1269 18.60 2.4 3.7 b
271 1097 18.20 17.6   s 311 1270 18.70 14.5 4.4 d
272 1101 18.50 3.7   c 312 1277 19.40 5.2 3.3 b
273 1102 19.20 20.8 5.7 d 313 1278 19.10 109 10.4 d
274 1104 19.20 4.1   c 314 1281 19.10 7.1 4.2 b
275 1105 19.50 9.7 4.7 b 315 1288 19.20 12.7   s
276 1106 18.80 7.8   s 316 1299 18.90 4.9 6.1 b
277 1112 19.10 2.3 3.2 b 317 1300 19.10 7.0 3.6 d
278 1122 18.20 3.0   c 318 1304 19.20 4.4 3.3 b
279 1123 19.40 4.9 3.5 b 319 1309 18.90 2.1   c
280 1129 18.50 3.0   zs 320 1314 16.90 10.6 4.0 d


 
Table 1: continued
n n(IFM) mV S ${d(\hbox{$^{\prime\prime}$ })}$ Type n n(IFM) mV S ${d(\hbox{$^{\prime\prime}$ })}$ Type
                       
321 1319 19.20 3.2   c 361 1473 17.70 4.8 5.4 b
322 1326 19.20 4.4   c 362 1474 17.70 9.1 4.9 b
323 1327 17.50 6.2 4.0 b 363 1475 19.00 3.2   c
324 1328 18.80 2.6 3.3 b 364 1480 18.80 4.5   c
325 1331 18.40 4.7 4.8 b 365 1487 18.50 9.2 4.3 d
326 1334 18.71 3.5 3.3 d 366 1504 18.93 3.4 3.3 b
327 1339 18.80 3.6   c 367 1507 19.40 4.3   c
328 1356 17.64 6.7 3.8 d 368 1508 19.10 64   zs
329 1358 18.50 8.2 4.1 d 369 1512 19.40 4.5 4.7 b
330 1363 19.30 35 4.5 d 370 1523 17.80 7.4   s
331 1368 19.07 28.3 5.4 d 371 1524 17.60 5.8 3.8 d
332 1381 19.00 36 6.8 d 372 1527 18.10 2.7   c
333 1383 18.90 3.3 5.7 b 373 1528 18.70 3.1   c
334 1386 18.60 6.7 3.9 d 374 1533 19.10 14.5   s
335 1389 18.90 3.7 3.9 b 375 1536 19.30 5.8   s
336 1393 19.20 3.8 3.2 b 376 1539 19.30 150 9.2 d
337 1396 19.20 2.5   c 377 1541 19.00 2.8 2.9 b
338 1400 19.00 39 10.7 b 378 1543 18.80 5.8 5.2 b
339 1402 18.70 84 9.1 d 379 1547 18.80 47 4.2 d
340 1404 17.50 7.1 3.2 d 380 1548 19.00 5.2 4.5 b
341 1405 19.40 100 9.9 d 381 1551 18.50 9.3 4.2 d
342 1406 18.61 119 10.2 d 382 1553 18.10 8.5 2.9 d
343 1408 19.41 2.4 4.2 b 383 1556 18.99 5.7 4.6 b
344 1413 17.20 11.9   s 384 1560 19.40 4.1 3.3 b
345 1414 18.10 3.9 3.4 d 385 1561 19.00 3.3 2.5 b
346 1422 18.70 3.5   c 386 1567 19.30 2.9 3.6 b
347 1426 18.90 7.9 4.6 b 387 1568 19.27 9.2   c
348 1427 17.90 3.5   c 388 1569 19.42 3.4 2.7 b
349 1431 18.09 7.5 4.5 d 389 1571 18.00 2.8 3.0 d
350 1434 18.65 4.3   c 390 1573 17.40 8.7 4.3 d
351 1436 19.40 2.5 2.9 b 391 1575 16.60 27 5.5 d
352 1440 19.00 2.1   c 392 1576 19.00 2.7 3.6 b
353 1448 18.60 2.0 3.4 b 393 1579 18.00 64   s
354 1451 18.40 2.2   c 394 1588 16.48 45 4.7 d
355 1453 18.40 5.6 4.4 b 395 1589 19.50 4.6 3.6 b
356 1460 18.99 5.3 3.5 d 396 1607 18.10 3.4   c
357 1463 18.40 3.5   zs 397 1613 19.30 5.0   s
358 1465 18.80 2.2   c 398 1617 18.31 2.6   c
359 1466 18.50 4.1 3.1 d 399 1625 18.79 4.0 2.9 b
360 1467 17.95 5.5   s 400 1630 19.10 2.6 2.5 b


 
Table 1: continued
n n(IFM) mV S ${d(\hbox{$^{\prime\prime}$ })}$ Type n n(IFM) mV S ${d(\hbox{$^{\prime\prime}$ })}$ Type
                       
401 1637 19.30 14   s 441 1779 18.40 23.1   s
402 1644 17.10 3.0 3.8 d 442 1780 18.82 205   zs
403 1648 18.50 3.1 3.9 b 443 1781 19.30 4.3   c
404 1650 19.30 6.5 4.1 b 444 1783 19.20 30 6.5 d
405 1660 18.20 9.6 3.6 d 445 1790 19.01 60 7.6 d
406 1661 19.37 4.4 3.7 b 446 1793 19.00 2.8   c
407 1665 19.38 21 6.2 d 447 1794 18.86 2.2 4.5 b
408 1667 19.11 7.8 4.7 b 448 1796 18.40 8.3 3.0 d
409 1670 19.50 2.8 2.9 b 449 1800 19.00 88 6.5 d
410 1671 18.90 5.4   c 450 1805 18.11 8.6 3.0 d
411 1677 19.01 3.4 3.3 b 451 1808 19.19 5.6 3.7 b
412 1685 19.20 4.6   c 452 1810 18.70 32 6.4 d
413 1686 19.16 5.0 3.3 b 453 1811 19.10 3.2 2.7 b
414 1700 19.20 4.6 2.5 b 454 1813 19.40 51 7.5 d
415 1701 18.40 8.2 5.4 b 455 1818 18.90 23   s
416 1704 18.51 2.3 3.9 b 456 1820 18.64 5.0 2.9 b
417 1707 19.20 3.5 3.7 b 457 1821 18.80 2.8 3.2 b
418 1708 18.90 30 3.9 d 458 1825 17.08 13.7   s
419 1714 19.00 37 4.9 d 459 1829 19.20 6.6 4.6 b
420 1720 18.90 4.6 3.8 b 460 1838 19.30 5.8   c
421 1728 19.10 16.8   s 461 1840 19.40 120 7.7 d
422 1731 18.10 16.1   s 462 1852 19.30 5.6 2.9 b
423 1733 16.70 10.6 5.0 d 463 1855 18.85 22   s
424 1734 19.18 4.7 3.8 b 464 1866 18.90 3.4   c
425 1735 16.40 430   zs 465 1867 18.50 13.1 3.8 d
426 1736 19.50 2.5   c 466 1870 19.35 6.0 3.1 b
427 1737 18.20 4.1 2.9 b 467 1875 19.10 4.5 3.2 b
428 1741 18.40 2.6 3.1 b 468 1878 19.10 2.2   c
429 1747 18.70 4.2   c 469 1895 18.34 7.7   c
430 1749 19.30 8.3 4.6 b 470 1897 19.20 2.7 3.5 b
431 1750 19.10 61   s 471 1900 18.10 3.4 3.6 b
432 1751 16.40 27   s 472 1904 19.00 6.6 4.1 b
433 1761 19.10 33   s 473 1909 19.48 3.0 3.4 b
434 1764 19.30 2.7 2.6 b 474 1913 18.66 46 5.1 d
435 1765 19.40 6.6   c 475 1914 18.96 11.5 3.3 d
436 1766 18.20 10.2 4.5 b 476 1915 19.40 130 6.7 d
437 1770 19.26 2.7   c 477 1922 18.80 2.3 2.4 b
438 1775 18.26 2.0   c 478 1923 18.80 2.3 2.8 b
439 1776 16.49 45 4.9 d 479 1925 19.00 8.2 2.7 d
440 1777 19.38 3.4 4.4 b 480 1930 19.19 4.2 3.0 b


 
Table 1: continued
n n(IFM) mV S ${d(\hbox{$^{\prime\prime}$ })}$ Type n n(IFM) mV S ${d(\hbox{$^{\prime\prime}$ })}$ Type
                       
481 1931 19.44 13.9   s 521 385 19.40 2.1   c
482 1939 18.90 3.1   c 522 535 18.91 6.0   c
483 1942 19.40 6.1   c 523 638 19.30 6.7 4.2 b
484 1943 19.30 2.6 2.8 b 524 659 19.00 2.5   c
485 1946 19.20 4.7 3.3 b 525 669 19.20 2.2   c
486 1954 19.18 9.5 3.8 b 526 688 19.15 84   s
487 1964 18.80 38   s 527 781 18.70 4.7   c
488 1973 18.57 6.2 2.8 d 528 809 18.90 7.0   s
489 1974 19.24 12.2 3.9 b 529 836 18.60 4.2   c
490 1976 19.24 1.9   c 530 911 19.18 30 5.0 d
491 1979 18.00 9.9 3.9 b 531 920 17.70 6.6 3.8 d
492 1987 19.40 10.0 4.8 b 532 1090 19.40 5.3   s
493 1990 18.74 5.4 3.3 b 533 1127 19.50 21   c
494 1991 18.37 5.1 3.9 b 534 1270 18.20 18.1 4.9 d
495 1992 17.42 4.8   s 535 1273 17.00 2.8 3.7 d
496 2002 19.24 10.8 4.3 b 536 1285 19.18 3.1   c
497 2003 19.47 3.7 2.7 b 537 1294 18.40 16.8 6.4 b
498 2022 16.10 3.5 3.8 d 538 1332 18.40 36 5.6 d
499 2025 19.00 3.0 2.3 b 539 1517 18.80 5.0   s
500 2031 18.95 11.3   s 540 1591 17.89 3.7 3.5 d
501 2043 18.90 23 4.8 b 541 1624 19.00 5.7 4.1 b
502 2059 19.10 3.1 2.5 b 542 1647 18.60 4.0   c
503 2067 18.10 2.6   c 543 1662 18.70 3.8   c
504 2068 19.44 4.4   c 544 1763 18.80 22   s
505 2075 19.00 8.6   c 545 1879 17.76 2.1 3.3 b
506 2077 18.70 32 5.3 b 546 1880 17.20 17.4   s
507 2085 19.30 50   s 547 1908 18.70 6.5   s
508 2086 17.90 5.3 3.6 b 548 2004 19.30 120 7.2 d
509 2087 19.23 29   s 549 2143 18.04 21.3   s
510 2091 18.62 13.6   s            
511 2102 18.10 2.9 4.1 b            
512 2103 17.94 34   s            
513 2107 18.00 6.6 2.8 d            
514 2117 18.40 7.4   c            
515 10 17.85 3.1 3.3 b            
516 60 18.30 140 6.5 d            
517 104 17.20 77   s            
518 266 19.10 2.1 2.9 b            
519 286 17.89 8.1 4.6 b            
520 349 18.83 2.9 3.6 b            
                       

All isolated objects are listed in Table 1, where the columns present: 1) successive numbers n, 2) number from the original catalogue n(IFM). The last 35 objects are from the first unpublished version of the catalogue. Other columns are 3) stellar magnitudes V, 4) ${ S=(F-F_{\rm b})/\sigma_{\rm b}}$ -- flux excess over the flux of the basic (nonemission) star sequence, which is measured in standard deviations of stars composing this sequence, 5) object sizes in arcseconds (for objects of types b and d only), 6) morphological type. Finding charts could be found in IFM.

From the examination of Table 1 it follows that the objects having a maximal excess in H$\alpha $ belong mostly to the diffuse nebulae sequence, while the objects with a minimal excess belong to the sequence of bubbles (see also Table 2). On the basis of the photometry data we may estimate H$\alpha $ line flux in units of stellar continuum flux. One may find a quantity ${W'_{\rm H\alpha}= \bigtriangleup\lambda \cdot((F-F_{\rm b})/F_{\rm b})}$, where $\bigtriangleup\lambda=35$ Å is a width of H$\alpha $ band used (Courtes et al. 1987). It is important to note that F is a total ${\rm H}\alpha $ band flux which is radiated both in a whole nebula and in a star's atmosphere, but the continuous emission ${ F_{\rm b}}$ is stellar. In a case of pure intrinsic stellar ${\rm H}\alpha $ emission it is the line equivalent width. In a case of nebula emission, ${W'_{\rm H\alpha}}$ is a direct function of the star UV luminosity beyond Lyman edge over that in V band, i.e. it is a function of the ionizing star's temperature. In general case ${W'_{\rm H\alpha}}$ depends on HII region size that surrounds the star, which in turn is determined by the star's temperature and luminosity, electron density and other parameters of the medium. The object sizes and the H$\alpha $ fluxes measured, may be of independent interest for study the isolated nebulae and their central stars parameters.


   
Table 2: The mean parameters and their rms of the emission objects
Type n V U-B B-V ${ V-\rm H{\alpha}}$ SB S d ( ${}^{\prime\prime}$) ${W'_{\rm H\alpha}}$ (Å)
                   
s 81 18.23 -0.78 0.08 2.26 277 19.7   273


  0.10 0.04 0.03 0.11 9 2.0   38

d

154 18.35 -0.85 0.08 2.52 180 28.0 4.93 558


  0.07 0.03 0.02 0.11 5 2.9 0.14 82

b

180 18.83 -0.68 0.04 1.65 75 6.9 4.08 120


  0.03 0.02 0.02 0.05 2 0.6 0.09 11

c

117 18.85 -0.82 0.05 1.60 625 4.2   101


  0.04 0.03 0.02 0.05 218 0.2   8

zs

17 18.55 -0.98 0.01 3.14   93   824
    0.20 0.07 0.09 0.36   34   342

Calzetti et al. (1995) published results of a systematic search for SS 433-type candidates in the galaxy M33. To isolate candidates they used CCD images of M33 in a narrow H$\alpha $ band and in an adjacent continuum at about 6100 Å. They have estimated a limiting stellar magnitude as V $\approx 20$. The M33 field coverage by their images is approximately twice as small as the region we have studied. Calzetti et al. (1995) have isolated a total of 279 compact HII regions and 153 point-like emission sources (actually analysis of their images reveals that their samples contain 27 object repetitions). Their fields contain 311 objects from 549 objects we have selected. Comparing our Table 1 with the data of Calzetti et al. (1995), we found 42 common objects, 17 of them among HII regions and 25 from the point-like emission objects. The greater part of these HII regions belong to our sequence of diffuse nebulae. A half of these point-like H$\alpha $ sources are also among our diffuse nebulae, while the rest of the objects are of types s and c. The list of Calzetti et al. (1995) comprises 64$\%$ HII regions and 36$\%$ point-like objects. Our sample contains 63$\%$ d and b nebulae, 15$\%$ s and 22$\%$ c objects, i.e. 37$\%$ are star-like emission objects. The relative proportions of extended and star-like objects in these two lists are in agreement. The incomplete overlapping of the lists is likely to be due to the fact that Calzetti et al. (1995) have examined central regions of M33, where the great H$\alpha $ background inhibits the separation of emission objects in the photographic data we used. For this reason these two lists may be considered as complementing each other.


next previous
Up: A survey of blue

Copyright The European Southern Observatory (ESO)