next previous
Up: Strömgren photometry of 40


Subsections

3 Analysis

In Table 1 the aspect data for each asteroid, the longitude and latitude relative to the ecliptic, the solar phase angle, the geocentric, r, and heliocentric, $\Delta$, distances, are listed for every day of observation.


   
Table 1: Aspect data
Date Long Lat phase r $\Delta$
(0 UT) (1950) (1950) (deg) (AU) (AU)
40 Harmonia          
08 09 1997 352.11 -7.65 4.92 1.16620 2.16443
09 09 1997 351.86 -7.67 4.56 1.16501 2.16431
10 09 1997 351.61 -7.68 4.23 1.16406 2.16419
02 10 1997 346.36 -7.59 10.43 1.20539 2.16231
03 10 1997 346.17 -7.56 10.91 1.21001 2.16225
07 10 1997 345.47 -7.45 12.76 1.23066 2.16208
45 Eugenia          
08 09 1997 348.58 -3.53 1.89 1.78740 2.79222
09 09 1997 348.36 -3.57 1.60 1.78771 2.79301
10 09 1997 348.13 -3.60 1.40 1.78831 2.79380
02 10 1997 343.59 -4.19 8.63 1.87130 2.81091
03 10 1997 343.43 -4.21 8.99 1.87811 2.81167
07 10 1997 342.81 -4.27 10.40 1.90779 2.81470
52 Europa          
08 09 1997 352.22 -7.19 3.22 2.23452 3.23064
09 09 1997 352.03 -7.22 2.98 2.23227 3.22979
10 09 1997 351.83 -7.25 2.76 2.23030 3.22893
02 10 1997 347.54 -7.60 6.69 2.25939 3.20973
03 10 1997 347.37 -7.61 7.00 2.26392 3.20885
07 10 1997 346.71 -7.61 8.25 2.28467 3.20528

3.1 Photometry

These observations were carried out during different nights of September and October when each asteroid had different phase angles, thus different magnitudes were observed. The mean reduced magnitudes observed for each uvby Strömgren filter, $\overline{uvby}(1,\alpha)$, the average phase angle of the observations, $\overline{\alpha}$, and the range of phase angle covered, during September and October observations, are presented in Table 2. The observed Strömgren colour indices, b-y and u-b, are also listed.


   
Table 2: Photometry
 
$\overline{uvby}(1,\alpha)$ $\overline{uvby}(1,\alpha)$ $\overline{uvby}(1,0)$ $\overline{UBV}(1,0)$ Q factors $\overline{uvby}(0)$ $\overline{UBV}(0)$ $\Delta_{((0,1)-(0))}$ TRIAD
(mag)    (mag)    (mag)    (mag)      (mag)    (mag)  (mag)    (mag) 
40 Harmonia                
$\overline{\alpha}=4\hbox{$.\!\!^\circ$ }25$ $\overline{\alpha}=12\hbox{$.\!\!^\circ$ }01$ $\beta_{\rm m}$ = 0.029            
$0\hbox{$.\!\!^\circ$ }31$ $1\hbox{$.\!\!^\circ$ }21$ 0.004            

y 7.402

y 7.705 y(1,0)7.369 V(1,0)7.369 Qy 0.145 y(0)7.043 V(0)7.043 $\Delta V$ 0.33 V(0)7.14
0.050 0.060 0.048 0.048 0.021 0.045 0.045 0.09  

b 7.939

b 8.239 b(1,0)7.903 B(1,0)8.231 Qb 0.148 b(0)7.581 B(0)7.910 $\Delta B$ 0.32  
0.050 0.061 0.048 0.059 0.021 0.045 0.195 0.25  

v 8.683

v 8.984 v(1,0)8.648 U(1,0)8.629 Qv 0.148 v(0)8.325 U(0)8.292 $\Delta U$ 0.34  
0.050 0.061 0.048 0.074 0.021 0.045 0.265 0.35  

u 9.831

u 10.146 u(1,0)9.810   Qu 0.122 u(0)9.460      
0.061 0.065 0.051   0.022 0.051      

b-y 0.536

b-y 0.535   B-V 0.862   b-y 0.538 B-V 0.867 $\Delta_{B-V}-0.005$ B-V 0.85
0.007 0.007   0.011   0.090 0.150     

u-b 1.892

u-b 1.902   U-B 0.398 Qm 0.141 u-b 1.879 U-B 0.382 $\Delta_{U-B}$0.016 U-B 0.43
0.021   0.020   0.015 0.021 0.096 0.070    

45 Eugenia

               

$\overline{\alpha}=1\hbox{$.\!\!^\circ$ }46$

$\overline{\alpha}=9\hbox{$.\!\!^\circ$ }83$ $\beta_{\rm m}$ 0.030            
$0\hbox{$.\!\!^\circ$ }14$ $0\hbox{$.\!\!^\circ$ }92$ 0.010            

y 7.661

y 8.098 y(1,0)7.815 V(1,0)7.815 Qy 0.142 y(0)7.504 V(0)7.504 $\Delta V$ 0.31 V(0)7.27
0.043 0.054 0.052 0.052 0.020 0.042 0.042 0.09  

b 8.086

b 8.216 b(1,0)8.216 B(1,0)8.455 Qb 0.174 b(0)7.935 B(0)8.193 $\Delta B$ 0.26  
0.046 0.044 0.044 0.120 0.020 0.039 0.177 0.30  

v 8.688

v 9.112 v(1,0)8.828 U(1,0)8.665 Qv 0.157 v(0)8.532 U(0)8.394 $\Delta U$ 0.27  
0.049 0.051 0.044 0.161 0.019 0.039 0.279 0.44  

u 9.721

u 10.142 u(1,0)9.856   Qu 0.162 u(0)9.5650      
0.082 0.041 0.066   0.031 0.063      

b-y 0.425

b-y 0.401   B-V 0.659   b-y 0.431 B-V 0.689 $\Delta B-V-0.030$ B-V 0.66
0.020 0.041   0.051   0.081 0.135    

u-b 1.634

u-b 1.643   U-B 0.207 Qm 0.159 u-b 1.630 U-B 0.201 $\Delta U-B$ 0.006 U-B 0.27
0.055 0.056   0.041 0.023 0.102 0.074    

52 Europa

               

$\overline{\alpha}=2\hbox{$.\!\!^\circ$ }77$

$\overline{\alpha}=7\hbox{$.\!\!^\circ$ }75$ $\beta_{\rm m}$ 0.040            
$0\hbox{$.\!\!^\circ$ }21$ $0\hbox{$.\!\!^\circ$ }81$ 0.012            

y 6.665

y 6.935 y(1,0)6.640 V(1,0)6.640 Qy 0.093 y(0)6.382 V(0)6.382 $\Delta V$ 0.26 V(0)6.25
0.058 0.060 0.052 0.052 0.026 0.071 0.071 0.12  

b 7.094

b 7.348 b(1,0)7.053 B(1,0)7.313 Qb 0.127 b(0)6.822 B(0)7.086 $\Delta B$ 0.23  
0.059 0.061 0.053 0.081 0.035 0.072 0.214 0.29  

v 7.732

v 7.980 v(1,0)7.685 U(1,0)7.580 Qv 0.138 v(0)7.463 U(0)7.359 $\Delta U$ 0.22  
0.058 0.063 0.054 0.107 0.035 0.073 0.335 0.44  

u 8.819

u 9.064 u(1,0)8.769   Qu 0.143 u(0)8.551      
0.088 0.066 0.061   0.046 0.094      

b-y 0.429

b-y 0.413   B-V 0.673   b-y 0.440 B-V 0.704 $\Delta B-V-0.031$ B-V 0.66
0.021 0.014   0.029   0.143 0.239    

u-b 1.725

u-b 1.717   U-B 0.267 Qm 0.125 u-b 1.729 U-B 0.273 $\Delta U-B-0.006$ U-B 0.33
0.062 0.036   0.036 0.036 0.166 0.121    

               

We have applied a linear phase correction to transform the observed uvby reduced magnitudes to zero-phase angle magnitudes, uvby (1,0). No significative differences are found in the individual linear phase coefficients, $\beta_{{\rm filter}}$, obtained using the different Strömgren filters. The slight differences found are, in all the cases, within the error bars of the determinations, but these slight differences could influence the colour indices when they are transformed to zero-phase angle. In order to preserve the colour indices measured, a mean linear phase coefficient, $\beta_{\rm m}$, that is more suitable for the observed magnitudes at phase angles greater than 7$^\circ$ in all the Strömgren filters, is used to transform to zero-phase angle magnitudes. The magnitudes uvby (1,0) are calculated as $uvby(1,\alpha)= uvby(1,0) + \beta_{\rm m}\alpha $. This relation has been applied to the measurements taken during October when the solar phase angles were greater than 7$^\circ$ for all the asteroids.

Lumme & Bowell ([1981a], [1981b]) showed that the light observed at phase angle $\alpha$ relative to the luminosity at zero phase is decomposed into a single scattering part and a multiple scattering part, and the magnitudes at phase angle $\alpha$ can be expressed as $V(\alpha) = V(0^\circ)-2.5~{\rm Log}((1-Q)\phi(\alpha) +Q)$. Here, $\phi(\alpha)$ is the corresponding phase function for single scattered light and Q is the multiple scattering factor. Lumme & Bowell ([1981b]) found that $\phi(\alpha)$ can be expressed as $\phi(\alpha) = 1 - {\rm sin}\alpha/(0.124 + 1.407~{\rm sin}\alpha -0.758~ {\rm sin}^2
\alpha)$in the phase range $0^\circ \le \alpha \le 25^\circ$. We have used all the data measured from September to October, for each asteroid, to find the values of $Q_{{\rm filter}}$ and $V_{{\rm filter}}(0)$ which produce the best fit, for each filter, to the Lumme & Bowell ([1981b]) relation.

The Strömgren magnitudes and colour indices obtained by linear analysis, $\overline{uvby}(1,0)$, and those obtained by following the radiative transfer theory of Lumme & Bowell ([1981b]), $\overline{uvby}(0)$, are shown in Table 2. These Strömgren values are transformed into the UBV Johnson system by using the transformation equations of Warren & Hesser ([1977]) to transform the Strömgren b-y and u-b colour indices to Johnson B-V and U-B colour indices. As the "y'' standard magnitude obtained using the "y'' Strömgren filter is equivalent to the "V'' magnitude of the "V'' Johnson filter, knowing the B-V and U-B colour indices, the B and U magnitudes are calculated directly. The Johnson magnitudes and colour indices obtained are also shown in Table 2, together with the differences found between the Johnson magnitudes calculated using a linear phase correction, $\overline{UBV}(1,0)$, and those obtained by using the Lumme and Bowell relation $\overline{UBV}(0)$, (values $\Delta_{((0,1)-(0))}$ in Table 2).

In order to obtain the corresponding rotational synodic periods for each asteroid, analysis of frequencies were carried out on our data using the method described in Rodríguez et al. ([1998]). Synodic periods of $0\hbox{$.\!\!^{\rm d}$ }37125$, $0\hbox{$.\!\!^{\rm d}$ }23750$ and $0\hbox{$.\!\!^{\rm d}$ }23456$ are obtained for 40 Harmonia, 45 Eugenia and 52 Europa, respectively.


  \begin{figure}\psfig{figure=ds1744f1.eps,height=12.cm,width=12.cm}\end{figure} Figure 1: Lightcurves and colour indices of 40 Harmonia in rotational phase. The 0 phase time corresponds at JD 2450700.5388 corrected for light-time

Figures 1 to 3 show the composite lightcurves derived using these synodic periods for each asteroid. The (1,0) magnitudes derived in the different Strömgren filters and the b-y, v-b and u-b colour indices versus the rotational phase are also shown in these figures. The Strömgren magnitudes observed during September need a greater phase angle correction than that applied to those observed during October when the phase angles are greater than 7$^\circ$. Therefore September magnitudes are shifted by additional constants of $+0\hbox{$.\!\!^{\rm m}$ }07$, $+0\hbox{$.\!\!^{\rm m}$ }18$ and $+0\hbox{$.\!\!^{\rm m}$ }05$, in all the uvby filters, for 40 Harmonia, 45 Eugenia and 52 Europa, respectively. The composite lightcurves obtained for each asteroid show very regular shapes with two maxima and two minima per rotation cycle.


  \begin{figure}\psfig{figure=ds1744f2.eps,height=12.cm,width=12.cm}\end{figure} Figure 2: Lightcurves and colour indices of 45 Eugenia in rotational phase. The 0 phase time corresponds at JD 2450700.5473 corrected for light-time


  \begin{figure}\psfig{figure=ds1744f3.eps,height=12.cm,width=12.cm}\end{figure} Figure 3: Lightcurves and colour indices of 52 Europa in rotational phase. The 0 phase time corresponds at JD 2450700.5384 corrected for light-time

3.2 Poles and shapes

Poles and shapes for these asteroids have been determined using the Epoch/Amplitude method (see Taylor [1979]; Magnusson [1986] and Magnusson et al. [1989]). Lightcurve data reported in the literature together with lightcurves obtained here for these asteroids have been used in the analysis. Most of the lightcurves used in this work can be found in the Asteroid Photometric Catalogue by Lagerkvist et al. ([1987], [1988], [1992]). The epochs of maximum brightness and the lightcurve amplitudes used for each asteroid together with the references for the lightcurves used are listed in Table 3.


   
Table 3: Epochs of maximum brightness and Amplitudes observed
Date             JD Ecliptic Ecliptic Phase Amp. Reference
                  Long    Lat (deg) (mag)  
    (1950) (1950)      
40 Harmonia            
14  1 1958 2436217.8864 146.93 4.37 13.48 -- Gehrels and Owings (1962)
29  1 1958 2436232.7303 143.89 4.99 6.65 0.23 Gehrels and Owings (1962)
29  1 1958 2436232.9298 143.84 5.00 6.55 -- Gehrels and Owings (1962)
14  2 1975 2442457.5334 127.61 4.73 7.25 0.28 Lagerkvist (1978)
6 10 1983 2445614.2994 291.30 -3.62 26.81 0.30 McCheyne et al. (1985)
7 10 1983 2445615.3196 291.56 -3.62 26.86 -- McCheyne et al. (1985)
8 10 1983 2445616.3273 291.82 -3.61 26.91 -- McCheyne et al. (1985)
8  5 1986 2446558.7162 233.41 5.12 3.59 0.15 Gallardo and Tancredi (1987)
9  9 1997 2450701.4624 351.62 -7.68 4.24 -- This work
10  9 1997 2450701.6148 351.58 -7.68 4.20 0.15 This work
11  9 1997 2450702.5703 351.34 -7.70 3.95 -- This work
2 10 1997 2450724.4850 346.17 -7.56 10.90 0.15 This work
3 10 1997 2450725.3888 346.00 -7.54 11.33 -- This work
45 Eugenia            
11  6 1969 2440383.6909 217.87 9.96 16.05 -- Taylor et al. (1988)
4  5 1978 2443632.6831 226.59 10.77 4.56 0.29 Debehogne and Zappala (1980)
1  6 1978 2443660.6991 221.04 10.50 11.95 -- Harris and Young (1979)
13  1 1982 2444982.9384 172.49 0.95 18.66 0.17 Weidenschilling et al. (1987)
13  3 1982 2445041.5846 164.76 3.62 2.97 -- Debehogne et al. (1983)
21  5 1982 2445110.6812 161.27 4.68 22.75 0.20 Weidenschilling et al. (1987)
14  7 1982    176.10 4.60 21.40 0.18 Weidenschilling et al. (1987)
21  5 1983 2445476.0576 298.15 6.82 19.90 0.14 Weidenschilling et al. (1987)
30  6 1983 2445515.9700 294.80 6.81 7.17 0.11 Weidenschilling et al. (1987)
11 10 1983 2445618.7777 290.34 1.91 22.04 0.15 Weidenschilling et al. (1987)
11 11 1983 2445649.6401 298.90 0.89 20.45 0.15 Weidenschilling et al. (1987)
29  9 1984 2445972.7803 35.09 -8.14 9.97 -- Taylor et al. (1988)
24 10 1984 2445998.1970 29.82 -8.87 3.03 -- Taylor et al. (1988)
18 11 1984    24.90 -8.80 10.2 0.36 Weidenschilling et al. (1987)
27 11 1984 2446032.1503 23.74 -8.52 13.01 -- Taylor et al. (1988)
17  1 1985 2446082.7266 26.52 -6.86 19.51 0.41 Weidenschilling et al. (1987)
20 10 1985 2446359.0875 119.07 -5.22 20.27 0.15 Weidenschilling et al. (1987)
17  1 1986 2446447.8954 116.55 -5.23 1.83 0.09 Weidenschilling et al. (1987)
16  6 1987 2446962.6469 223.69 10.06 15.59 -- Lebofsky et al. (1988)
9  9 1997 2450700.6000 348.34 -3.57 1.58 0.12 This work
2 10 1997 2450724.4542 343.44 -4.21 8.97 0.12 This work
3 10 1997 2450725.4125 343.28 -4.22 9.32 -- This work
52 Europa            
17 11 1976 2443100.3604 64.73 -10.51 4.88 -- Scaltriti and Zappala (1977)
18 11 1976 2443100.6041 64.68 -10.51 4.82 -- Scaltriti and Zappala (1977)
19 11 1976 2443102.4801 64.29 -10.50 4.35 -- Scaltriti and Zappala (1977)
11 12 1976 2443124.2884 59.81 -9.93 7.52 0.09 Scaltriti and Zappala (1977)
12 12 1976 2443124.5264 59.76 -9.92 7.60 -- Scaltriti and Zappala (1977)
24  1 1983 2445359.3366 119.91 -1.52 1.49 0.10 Zappala et al. (1983)
24  1 1983 2445359.4646 119.91 -1.52 1.49 -- Zappala et al. (1983)
25  1 1983 2445359.5729 119.86 -1.51 1.58 -- Zappala et al. (1983)
25  4 1984 2445815.5260 211.19 10.83 3.58 0.08 Barucci et al. (1986)
2  9 1986 2446675.5158 347.15 -6.32 3.26 0.23 Dotto et al. (1995)
2  9 1986 2446675.6309 347.12 -6.33 3.22 -- Dotto et al. (1995)
2 11 1992 2448928.7170 26.44 -10.90 5.53 0.10 Michalowski et al. (1995)
8  2 1994 2449391.7604 124.43 0.16 4.94 0.11 Michalowski et al. (1995)
8  2 1994 2449391.8824 124.41 0.16 4.99 -- Michalowski et al. (1995)
9  9 1997 2450700.6467 351.99 -7.22 2.95 0.20 This work
11  9 1997 2450702.5240 351.62 -7.27 2.57 -- This work
2 10 1997 2450724.3380 347.39 -7.61 6.95 0.20 This work
3 10 1997 2450725.3984 347.21 -7.61 7.29 -- This work
7 10 1997 2450729.3837 346.58 -7.61 8.52 -- This work

           

We use the method proposed by Michalowski & Velichko ([1990]) that use the Epoch and Amplitude equations to build expressions, $f_{\rm l} (Tsid,\lambda_{\rm p},\beta_{\rm p}, b/a,b/c,\beta_{\rm A})=0$ for l=1,...(k+m), where k is the number of pairs of lightcurves used for the Epoch equations, m is the number of lightcurves used for the Amplitude equations, Tsid is the sidereal period of rotation of the asteroid, $\lambda_{\rm p}$ and $\beta_{\rm p}$ are the pole coordinates of the asteroid, $a\ge b \ge c$ are the symmetry axes of the asteroid (considered as a triaxial ellipsoid of axis $a\ge b \ge c$ rotating about their shortest axis) and $\beta _{\rm A}$ is a phase coefficient taking into account the phase angle effects on the amplitude of the lightcurves. Following the work of De Angelis ([1993]), we have used the same procedure of standardization of the variables $f_{\rm l}$, dividing each $f_{\rm l}$ by the standard deviation $\sigma$ of all $f_{\rm l}$ of the same group of equations, and then, these expressions for $f_{\rm l}$ have been used as elements of a sum of squares to be minimized by a least-square fit.

First of all we look for a mean synodic period that suits all the epochs of maximum light for each asteroid. There are cases where this mean synodic period is not well defined, as it is possible to choose between different mean synodic periods. For these cases we look for different solutions for each of the possible mean synodic periods by using a grid of $\lambda_{\rm p}$ and $\beta_{\rm p}$ as trial poles making a least-square fit for each trial pole, first for prograde and then for retrograde solutions. The solutions with least residuals are considered as the most probable solutions. In this way we obtain a more likely solution for the corresponding values of $Tsid, \lambda_{\rm p}, \beta_{\rm p}, a/b, b/c $ and $\beta _{\rm A}$ simultaneously.

In Table 4 we have listed the final solution obtained for $Tsid, \lambda_{\rm p}, \beta_{\rm p}, a/b, b/c $ and $\beta _{\rm A}$ for each asteroid, together with the mean synodic period used. Previous solutions reported by earlier authors are also shown in Table 4.


   
Table 4: Rotational properties
Reference Mean Tsyn Sense Tsid    $\lambda_{\rm p}$ $\beta_{\rm p}$ $\lambda_{\rm p}$ $\beta_{\rm p}$ a/b b/c $\beta _{\rm A}$
                     
40 Harmonia                    
Tancredi & Gallardo (1991)       20$^\circ$ 40$^\circ$ 203$^\circ$ 45$^\circ$ 1.31 1  
Michalowski (1993)   P $0\hbox{$.\!\!^{\rm d}$ }3712522$     208$^\circ$ 21$^\circ$ 1.24 2.07  
This work $0\hbox{$.\!\!^{\rm d}$ }3712973$ P $0\hbox{$.\!\!^{\rm d}$ }3711872$ 22$^\circ$ 28$^\circ$ 203$^\circ$ 38$^\circ$ 1.31 1 0.00001
This work $0\hbox{$.\!\!^{\rm d}$ }3713638$ P $0\hbox{$.\!\!^{\rm d}$ }3712535$ 12$^\circ$ 34$^\circ$ 201$^\circ$ 41$^\circ$ 1.31 1 0.00001

 

                   
45 Eugenia                    

Taylor et al. (1988)

  R $0\hbox{$.\!\!^{\rm d}$ }2374645$ 106$^\circ$ 26$^\circ$ 295$^\circ$ 34$^\circ$      
Drummond et al. (1988)   R $0\hbox{$.\!\!^{\rm d}$ }2374646$     307$^\circ$ 44$^\circ$ 1.33 1.65  
Magnusson (1990)   R $0\hbox{$.\!\!^{\rm d}$ }2374646$ 116$^\circ$ 26$^\circ$ 305$^\circ$ 35$^\circ$ 1.36 1.48  
Lumme et al. (1990)   R $0\hbox{$.\!\!^{\rm d}$ }2374646$ 128$^\circ$ 16$^\circ$ 313$^\circ$ 25$^\circ$ 1.3 1.4  
Drummond et al. (1991)   R $0\hbox{$.\!\!^{\rm d}$ }2374646$     307$^\circ$ 44$^\circ$ 1.33 1.65  
De Angelis (1995)   R $0\hbox{$.\!\!^{\rm d}$ }2374650$     289$^\circ$ 27$^\circ$ 1.33 1.23 0.0054
This work $0\hbox{$.\!\!^{\rm d}$ }2374297$ R $0\hbox{$.\!\!^{\rm d}$ }2374644$ 106$^\circ$ 42$^\circ$ 313$^\circ$ 41$^\circ$ 1.33 1.4 0.0030

 

                   
52 Europa                    
Barucci et al. (1986)       0$^\circ$ 37$^\circ$ 203$^\circ$ 38$^\circ$ 1.12 1  
Dotto et al. (1995)   R $0\hbox{$.\!\!^{\rm d}$ }2346504$ 70$^\circ$ 40$^\circ$ 260$^\circ$ 55$^\circ$ 1.21 1.30  
Michalowski et al. (1995)   R $0\hbox{$.\!\!^{\rm d}$ }2347019$ 77$^\circ$ 18$^\circ$ 264$^\circ$ 32$^\circ$ 1.20 1.17  
This work $0\hbox{$.\!\!^{\rm d}$ }2346131$ P $0\hbox{$.\!\!^{\rm d}$ }2345855$ 63$^\circ$ 46$^\circ$ 261$^\circ$ 60$^\circ$ 1.19 2.2 0.0050


next previous
Up: Strömgren photometry of 40

Copyright The European Southern Observatory (ESO)