In Table 1 the aspect data for each asteroid, the longitude and latitude
relative to the ecliptic, the solar phase angle, the geocentric, r, and
heliocentric, ,
distances, are listed for every day of observation.
Date | Long | Lat | phase | r | ![]() |
(0 UT) | (1950) | (1950) | (deg) | (AU) | (AU) |
40 Harmonia | |||||
08 09 1997 | 352.11 | -7.65 | 4.92 | 1.16620 | 2.16443 |
09 09 1997 | 351.86 | -7.67 | 4.56 | 1.16501 | 2.16431 |
10 09 1997 | 351.61 | -7.68 | 4.23 | 1.16406 | 2.16419 |
02 10 1997 | 346.36 | -7.59 | 10.43 | 1.20539 | 2.16231 |
03 10 1997 | 346.17 | -7.56 | 10.91 | 1.21001 | 2.16225 |
07 10 1997 | 345.47 | -7.45 | 12.76 | 1.23066 | 2.16208 |
45 Eugenia | |||||
08 09 1997 | 348.58 | -3.53 | 1.89 | 1.78740 | 2.79222 |
09 09 1997 | 348.36 | -3.57 | 1.60 | 1.78771 | 2.79301 |
10 09 1997 | 348.13 | -3.60 | 1.40 | 1.78831 | 2.79380 |
02 10 1997 | 343.59 | -4.19 | 8.63 | 1.87130 | 2.81091 |
03 10 1997 | 343.43 | -4.21 | 8.99 | 1.87811 | 2.81167 |
07 10 1997 | 342.81 | -4.27 | 10.40 | 1.90779 | 2.81470 |
52 Europa | |||||
08 09 1997 | 352.22 | -7.19 | 3.22 | 2.23452 | 3.23064 |
09 09 1997 | 352.03 | -7.22 | 2.98 | 2.23227 | 3.22979 |
10 09 1997 | 351.83 | -7.25 | 2.76 | 2.23030 | 3.22893 |
02 10 1997 | 347.54 | -7.60 | 6.69 | 2.25939 | 3.20973 |
03 10 1997 | 347.37 | -7.61 | 7.00 | 2.26392 | 3.20885 |
07 10 1997 | 346.71 | -7.61 | 8.25 | 2.28467 | 3.20528 |
These observations were carried out during different nights of September
and October when each asteroid had different phase angles, thus different
magnitudes were observed.
The mean reduced magnitudes observed for each uvby
Strömgren filter,
,
the average phase angle of the observations,
,
and the range of
phase angle covered, during September and October observations, are presented
in Table 2.
The observed Strömgren colour indices, b-y and u-b, are also listed.
![]() |
![]() |
![]() |
![]() |
Q factors |
![]() |
![]() |
![]() |
TRIAD |
(mag) | (mag) | (mag) | (mag) | (mag) | (mag) | (mag) | (mag) | |
40 Harmonia | ||||||||
![]() |
![]() |
![]() |
||||||
![]() |
![]() |
0.004 | ||||||
y 7.402 |
y 7.705 | y(1,0)7.369 | V(1,0)7.369 | Qy 0.145 | y(0)7.043 | V(0)7.043 | ![]() |
V(0)7.14 |
0.050 | 0.060 | 0.048 | 0.048 | 0.021 | 0.045 | 0.045 | 0.09 | |
b 7.939 |
b 8.239 | b(1,0)7.903 | B(1,0)8.231 | Qb 0.148 | b(0)7.581 | B(0)7.910 | ![]() |
|
0.050 | 0.061 | 0.048 | 0.059 | 0.021 | 0.045 | 0.195 | 0.25 | |
v 8.683 |
v 8.984 | v(1,0)8.648 | U(1,0)8.629 | Qv 0.148 | v(0)8.325 | U(0)8.292 | ![]() |
|
0.050 | 0.061 | 0.048 | 0.074 | 0.021 | 0.045 | 0.265 | 0.35 | |
u 9.831 |
u 10.146 | u(1,0)9.810 | Qu 0.122 | u(0)9.460 | ||||
0.061 | 0.065 | 0.051 | 0.022 | 0.051 | ||||
b-y 0.536 |
b-y 0.535 | B-V 0.862 | b-y 0.538 | B-V 0.867 |
![]() |
B-V 0.85 | ||
0.007 | 0.007 | 0.011 | 0.090 | 0.150 | ||||
u-b 1.892 |
u-b 1.902 | U-B 0.398 | Qm 0.141 | u-b 1.879 | U-B 0.382 |
![]() |
U-B 0.43 | |
0.021 | 0.020 | 0.015 | 0.021 | 0.096 | 0.070 | |||
45 Eugenia |
||||||||
|
![]() |
![]() |
||||||
![]() |
![]() |
0.010 | ||||||
y 7.661 |
y 8.098 | y(1,0)7.815 | V(1,0)7.815 | Qy 0.142 | y(0)7.504 | V(0)7.504 | ![]() |
V(0)7.27 |
0.043 | 0.054 | 0.052 | 0.052 | 0.020 | 0.042 | 0.042 | 0.09 | |
b 8.086 |
b 8.216 | b(1,0)8.216 | B(1,0)8.455 | Qb 0.174 | b(0)7.935 | B(0)8.193 | ![]() |
|
0.046 | 0.044 | 0.044 | 0.120 | 0.020 | 0.039 | 0.177 | 0.30 | |
v 8.688 |
v 9.112 | v(1,0)8.828 | U(1,0)8.665 | Qv 0.157 | v(0)8.532 | U(0)8.394 | ![]() |
|
0.049 | 0.051 | 0.044 | 0.161 | 0.019 | 0.039 | 0.279 | 0.44 | |
u 9.721 |
u 10.142 | u(1,0)9.856 | Qu 0.162 | u(0)9.5650 | ||||
0.082 | 0.041 | 0.066 | 0.031 | 0.063 | ||||
b-y 0.425 |
b-y 0.401 | B-V 0.659 | b-y 0.431 | B-V 0.689 |
![]() |
B-V 0.66 | ||
0.020 | 0.041 | 0.051 | 0.081 | 0.135 | ||||
u-b 1.634 |
u-b 1.643 | U-B 0.207 | Qm 0.159 | u-b 1.630 | U-B 0.201 |
![]() |
U-B 0.27 | |
0.055 | 0.056 | 0.041 | 0.023 | 0.102 | 0.074 | |||
52 Europa |
||||||||
|
![]() |
![]() |
||||||
![]() |
![]() |
0.012 | ||||||
y 6.665 |
y 6.935 | y(1,0)6.640 | V(1,0)6.640 | Qy 0.093 | y(0)6.382 | V(0)6.382 | ![]() |
V(0)6.25 |
0.058 | 0.060 | 0.052 | 0.052 | 0.026 | 0.071 | 0.071 | 0.12 | |
b 7.094 |
b 7.348 | b(1,0)7.053 | B(1,0)7.313 | Qb 0.127 | b(0)6.822 | B(0)7.086 | ![]() |
|
0.059 | 0.061 | 0.053 | 0.081 | 0.035 | 0.072 | 0.214 | 0.29 | |
v 7.732 |
v 7.980 | v(1,0)7.685 | U(1,0)7.580 | Qv 0.138 | v(0)7.463 | U(0)7.359 | ![]() |
|
0.058 | 0.063 | 0.054 | 0.107 | 0.035 | 0.073 | 0.335 | 0.44 | |
u 8.819 |
u 9.064 | u(1,0)8.769 | Qu 0.143 | u(0)8.551 | ||||
0.088 | 0.066 | 0.061 | 0.046 | 0.094 | ||||
b-y 0.429 |
b-y 0.413 | B-V 0.673 | b-y 0.440 | B-V 0.704 |
![]() |
B-V 0.66 | ||
0.021 | 0.014 | 0.029 | 0.143 | 0.239 | ||||
u-b 1.725 |
u-b 1.717 | U-B 0.267 | Qm 0.125 | u-b 1.729 | U-B 0.273 |
![]() |
U-B 0.33 | |
0.062 | 0.036 | 0.036 | 0.036 | 0.166 | 0.121 | |||
We have applied a linear phase correction to
transform the observed uvby reduced magnitudes to zero-phase angle
magnitudes, uvby (1,0).
No significative differences are found
in the individual linear phase coefficients,
,
obtained using
the different Strömgren filters.
The slight differences found are, in all the cases, within the
error bars of the determinations, but these slight differences could
influence
the colour indices when they are transformed to
zero-phase angle. In order to preserve the colour indices measured, a
mean linear phase coefficient,
,
that is more suitable for the observed magnitudes
at phase angles greater than 7
in all the Strömgren filters,
is used to transform to zero-phase angle magnitudes.
The magnitudes uvby (1,0) are calculated as
.
This relation has been applied to the measurements taken during October when
the solar phase angles were greater than 7
for all the asteroids.
Lumme & Bowell
([1981a], [1981b]) showed that the light observed at phase angle
relative to the
luminosity at zero phase is decomposed into a single scattering part and a
multiple scattering part, and the magnitudes at phase angle
can be
expressed as
.
Here,
is the corresponding phase function for single scattered
light and Q is the multiple scattering factor.
Lumme & Bowell ([1981b]) found that
can
be expressed as
in the phase range
.
We have used all the data measured from September to October,
for each asteroid, to find the
values of
and
which produce the best
fit, for each filter, to the Lumme & Bowell ([1981b]) relation.
The Strömgren magnitudes and colour indices obtained by linear
analysis,
,
and those obtained
by following the radiative transfer theory of Lumme &
Bowell ([1981b]),
,
are shown in Table 2. These Strömgren values are
transformed into
the UBV Johnson system by using the transformation equations of Warren & Hesser
([1977]) to transform the Strömgren b-y and u-b
colour indices to Johnson B-V and U-B colour
indices. As the "y'' standard magnitude obtained using the "y'' Strömgren filter is
equivalent to the "V''
magnitude of the "V'' Johnson filter, knowing the B-V and U-B colour indices, the
B and U magnitudes are calculated directly. The Johnson magnitudes and colour
indices obtained are also shown in Table 2, together with
the differences found between the Johnson magnitudes calculated using a linear
phase correction,
,
and those obtained by using the Lumme and Bowell relation
,
(values
in Table 2).
In order to obtain the corresponding rotational synodic periods
for each asteroid, analysis of frequencies were carried out on our data using
the method described in
Rodríguez et al. ([1998]).
Synodic periods of
,
and
are obtained for 40 Harmonia,
45 Eugenia and 52 Europa, respectively.
![]() |
Figure 1: Lightcurves and colour indices of 40 Harmonia in rotational phase. The 0 phase time corresponds at JD 2450700.5388 corrected for light-time |
Figures 1 to 3 show the composite lightcurves derived using these synodic
periods for each asteroid. The (1,0) magnitudes derived in the
different Strömgren filters and the b-y, v-b and u-b colour indices versus the
rotational phase are also shown in these figures. The Strömgren magnitudes observed during September need a greater phase angle correction
than that applied to those observed during October when the phase angles are
greater than 7.
Therefore September magnitudes
are shifted by additional constants of
,
and
,
in all the uvby filters, for 40 Harmonia,
45 Eugenia and 52 Europa, respectively.
The composite lightcurves obtained for each asteroid show very regular shapes
with two maxima and two minima per rotation cycle.
![]() |
Figure 2: Lightcurves and colour indices of 45 Eugenia in rotational phase. The 0 phase time corresponds at JD 2450700.5473 corrected for light-time |
![]() |
Figure 3: Lightcurves and colour indices of 52 Europa in rotational phase. The 0 phase time corresponds at JD 2450700.5384 corrected for light-time |
Poles and shapes for these asteroids have been determined using the Epoch/Amplitude method (see Taylor [1979]; Magnusson [1986] and Magnusson et al. [1989]). Lightcurve data reported in the literature together with lightcurves obtained here for these asteroids have been used in the analysis. Most of the lightcurves used in this work can be found in the Asteroid Photometric Catalogue by Lagerkvist et al. ([1987], [1988], [1992]). The epochs of maximum brightness and the lightcurve amplitudes used for each asteroid together with the references for the lightcurves used are listed in Table 3.
Date | JD | Ecliptic | Ecliptic | Phase | Amp. | Reference |
Long | Lat | (deg) | (mag) | |||
(1950) | (1950) | |||||
40 Harmonia | ||||||
14 1 1958 | 2436217.8864 | 146.93 | 4.37 | 13.48 | -- | Gehrels and Owings (1962) |
29 1 1958 | 2436232.7303 | 143.89 | 4.99 | 6.65 | 0.23 | Gehrels and Owings (1962) |
29 1 1958 | 2436232.9298 | 143.84 | 5.00 | 6.55 | -- | Gehrels and Owings (1962) |
14 2 1975 | 2442457.5334 | 127.61 | 4.73 | 7.25 | 0.28 | Lagerkvist (1978) |
6 10 1983 | 2445614.2994 | 291.30 | -3.62 | 26.81 | 0.30 | McCheyne et al. (1985) |
7 10 1983 | 2445615.3196 | 291.56 | -3.62 | 26.86 | -- | McCheyne et al. (1985) |
8 10 1983 | 2445616.3273 | 291.82 | -3.61 | 26.91 | -- | McCheyne et al. (1985) |
8 5 1986 | 2446558.7162 | 233.41 | 5.12 | 3.59 | 0.15 | Gallardo and Tancredi (1987) |
9 9 1997 | 2450701.4624 | 351.62 | -7.68 | 4.24 | -- | This work |
10 9 1997 | 2450701.6148 | 351.58 | -7.68 | 4.20 | 0.15 | This work |
11 9 1997 | 2450702.5703 | 351.34 | -7.70 | 3.95 | -- | This work |
2 10 1997 | 2450724.4850 | 346.17 | -7.56 | 10.90 | 0.15 | This work |
3 10 1997 | 2450725.3888 | 346.00 | -7.54 | 11.33 | -- | This work |
45 Eugenia | ||||||
11 6 1969 | 2440383.6909 | 217.87 | 9.96 | 16.05 | -- | Taylor et al. (1988) |
4 5 1978 | 2443632.6831 | 226.59 | 10.77 | 4.56 | 0.29 | Debehogne and Zappala (1980) |
1 6 1978 | 2443660.6991 | 221.04 | 10.50 | 11.95 | -- | Harris and Young (1979) |
13 1 1982 | 2444982.9384 | 172.49 | 0.95 | 18.66 | 0.17 | Weidenschilling et al. (1987) |
13 3 1982 | 2445041.5846 | 164.76 | 3.62 | 2.97 | -- | Debehogne et al. (1983) |
21 5 1982 | 2445110.6812 | 161.27 | 4.68 | 22.75 | 0.20 | Weidenschilling et al. (1987) |
14 7 1982 | 176.10 | 4.60 | 21.40 | 0.18 | Weidenschilling et al. (1987) | |
21 5 1983 | 2445476.0576 | 298.15 | 6.82 | 19.90 | 0.14 | Weidenschilling et al. (1987) |
30 6 1983 | 2445515.9700 | 294.80 | 6.81 | 7.17 | 0.11 | Weidenschilling et al. (1987) |
11 10 1983 | 2445618.7777 | 290.34 | 1.91 | 22.04 | 0.15 | Weidenschilling et al. (1987) |
11 11 1983 | 2445649.6401 | 298.90 | 0.89 | 20.45 | 0.15 | Weidenschilling et al. (1987) |
29 9 1984 | 2445972.7803 | 35.09 | -8.14 | 9.97 | -- | Taylor et al. (1988) |
24 10 1984 | 2445998.1970 | 29.82 | -8.87 | 3.03 | -- | Taylor et al. (1988) |
18 11 1984 | 24.90 | -8.80 | 10.2 | 0.36 | Weidenschilling et al. (1987) | |
27 11 1984 | 2446032.1503 | 23.74 | -8.52 | 13.01 | -- | Taylor et al. (1988) |
17 1 1985 | 2446082.7266 | 26.52 | -6.86 | 19.51 | 0.41 | Weidenschilling et al. (1987) |
20 10 1985 | 2446359.0875 | 119.07 | -5.22 | 20.27 | 0.15 | Weidenschilling et al. (1987) |
17 1 1986 | 2446447.8954 | 116.55 | -5.23 | 1.83 | 0.09 | Weidenschilling et al. (1987) |
16 6 1987 | 2446962.6469 | 223.69 | 10.06 | 15.59 | -- | Lebofsky et al. (1988) |
9 9 1997 | 2450700.6000 | 348.34 | -3.57 | 1.58 | 0.12 | This work |
2 10 1997 | 2450724.4542 | 343.44 | -4.21 | 8.97 | 0.12 | This work |
3 10 1997 | 2450725.4125 | 343.28 | -4.22 | 9.32 | -- | This work |
52 Europa | ||||||
17 11 1976 | 2443100.3604 | 64.73 | -10.51 | 4.88 | -- | Scaltriti and Zappala (1977) |
18 11 1976 | 2443100.6041 | 64.68 | -10.51 | 4.82 | -- | Scaltriti and Zappala (1977) |
19 11 1976 | 2443102.4801 | 64.29 | -10.50 | 4.35 | -- | Scaltriti and Zappala (1977) |
11 12 1976 | 2443124.2884 | 59.81 | -9.93 | 7.52 | 0.09 | Scaltriti and Zappala (1977) |
12 12 1976 | 2443124.5264 | 59.76 | -9.92 | 7.60 | -- | Scaltriti and Zappala (1977) |
24 1 1983 | 2445359.3366 | 119.91 | -1.52 | 1.49 | 0.10 | Zappala et al. (1983) |
24 1 1983 | 2445359.4646 | 119.91 | -1.52 | 1.49 | -- | Zappala et al. (1983) |
25 1 1983 | 2445359.5729 | 119.86 | -1.51 | 1.58 | -- | Zappala et al. (1983) |
25 4 1984 | 2445815.5260 | 211.19 | 10.83 | 3.58 | 0.08 | Barucci et al. (1986) |
2 9 1986 | 2446675.5158 | 347.15 | -6.32 | 3.26 | 0.23 | Dotto et al. (1995) |
2 9 1986 | 2446675.6309 | 347.12 | -6.33 | 3.22 | -- | Dotto et al. (1995) |
2 11 1992 | 2448928.7170 | 26.44 | -10.90 | 5.53 | 0.10 | Michalowski et al. (1995) |
8 2 1994 | 2449391.7604 | 124.43 | 0.16 | 4.94 | 0.11 | Michalowski et al. (1995) |
8 2 1994 | 2449391.8824 | 124.41 | 0.16 | 4.99 | -- | Michalowski et al. (1995) |
9 9 1997 | 2450700.6467 | 351.99 | -7.22 | 2.95 | 0.20 | This work |
11 9 1997 | 2450702.5240 | 351.62 | -7.27 | 2.57 | -- | This work |
2 10 1997 | 2450724.3380 | 347.39 | -7.61 | 6.95 | 0.20 | This work |
3 10 1997 | 2450725.3984 | 347.21 | -7.61 | 7.29 | -- | This work |
7 10 1997 | 2450729.3837 | 346.58 | -7.61 | 8.52 | -- | This work |
We use the method proposed by Michalowski & Velichko ([1990]) that use the
Epoch and Amplitude equations to build expressions,
for
l=1,...(k+m),
where k is the number of pairs of lightcurves used for the Epoch equations, m is
the number of lightcurves used for the Amplitude equations,
Tsid is the sidereal period of rotation of the asteroid,
and
are the pole coordinates of the asteroid,
are the symmetry axes of the asteroid
(considered as a triaxial ellipsoid of axis
rotating about their shortest axis)
and
is a
phase coefficient taking into account the phase angle effects on the
amplitude of the lightcurves.
Following the work of De Angelis ([1993]), we have used
the same procedure of standardization of the variables
,
dividing each
by the standard deviation
of all
of the same group of
equations,
and then, these expressions for
have been used
as elements of a sum of squares to be minimized by a least-square fit.
First of all we look for a mean synodic period that suits all the
epochs of maximum light for each asteroid. There are cases where this mean synodic period
is not well defined, as it is possible to choose between different mean synodic
periods. For these cases we look for different solutions for each of
the possible
mean synodic periods
by using a grid of
and
as trial poles making a
least-square fit for each trial pole,
first for prograde and then for retrograde solutions.
The solutions with
least residuals are considered as the most probable solutions.
In this way we obtain a more likely solution for the corresponding values of
and
simultaneously.
In Table 4 we have listed the final solution obtained for
and
for each asteroid,
together with the mean synodic period used. Previous solutions reported by
earlier authors are also
shown in Table 4.
Reference | Mean Tsyn | Sense | Tsid |
![]() |
![]() |
![]() |
![]() |
a/b | b/c |
![]() |
40 Harmonia | ||||||||||
Tancredi & Gallardo (1991) | 20![]() |
40![]() |
203![]() |
45![]() |
1.31 | 1 | ||||
Michalowski (1993) | P |
![]() |
208![]() |
21![]() |
1.24 | 2.07 | ||||
This work |
![]() |
P |
![]() |
22![]() |
28![]() |
203![]() |
38![]() |
1.31 | 1 | 0.00001 |
This work |
![]() |
P |
![]() |
12![]() |
34![]() |
201![]() |
41![]() |
1.31 | 1 | 0.00001 |
|
||||||||||
45 Eugenia | ||||||||||
Taylor et al. (1988) |
R |
![]() |
106![]() |
26![]() |
295![]() |
34![]() |
||||
Drummond et al. (1988) | R |
![]() |
307![]() |
44![]() |
1.33 | 1.65 | ||||
Magnusson (1990) | R |
![]() |
116![]() |
26![]() |
305![]() |
35![]() |
1.36 | 1.48 | ||
Lumme et al. (1990) | R |
![]() |
128![]() |
16![]() |
313![]() |
25![]() |
1.3 | 1.4 | ||
Drummond et al. (1991) | R |
![]() |
307![]() |
44![]() |
1.33 | 1.65 | ||||
De Angelis (1995) | R |
![]() |
289![]() |
27![]() |
1.33 | 1.23 | 0.0054 | |||
This work |
![]() |
R |
![]() |
106![]() |
42![]() |
313![]() |
41![]() |
1.33 | 1.4 | 0.0030 |
|
||||||||||
52 Europa | ||||||||||
Barucci et al. (1986) | 0![]() |
37![]() |
203![]() |
38![]() |
1.12 | 1 | ||||
Dotto et al. (1995) | R |
![]() |
70![]() |
40![]() |
260![]() |
55![]() |
1.21 | 1.30 | ||
Michalowski et al. (1995) | R |
![]() |
77![]() |
18![]() |
264![]() |
32![]() |
1.20 | 1.17 | ||
This work |
![]() |
P |
![]() |
63![]() |
46![]() |
261![]() |
60![]() |
1.19 | 2.2 | 0.0050 |
Copyright The European Southern Observatory (ESO)