![]() |
(A1) | |
(A2) |
It is interesting to derive the rate of diagonally attached monopixels
(two monopixels touching by a corner and globally isolated.
See Fig. 1, top centre).
Those are produced only by piled-up monopixels (and Si escape,
which can be recognized because one of the energies is that of Si
).
Therefore they can reliably be counted as two monopixels.
The exclusion area corresponding to clean (not piled-up) diagonal events,
derived in the same way as in 2.2, is 14 for monopixels,
18 for bipixels, 21 or 22 for tripixels (depending on their orientation),
and 23 for quadripixels.
The production probability is the square of that of monopixels,
times 4 (there are 4 corners), both for
(total)
and for
(clean).
Note that the rate of diagonal events
(comprising two monopixels) is half that.
![]() |
||
(A3) | ||
(A4) |
![]() |
(A5) |
For clean bipixels (Fig. 1, bottom left)
the exclusion areas are [12, 15.5, 19, 20].
15.5 for bipixels is actually 15 for bipixels parallel
to that considered and 16 for perpendicular bipixels.
For (all bipixels)
one must remove the two pixels of the pattern for monopixels,
and one pixel for parallel bipixels, from the exclusion areas.
The probability to produce a bipixel pattern of a given orientation
(vertical, say), is that of having at least one vertical bipixel there (p2)
plus in the remaining cases (1-p2)
that of having at least two adjacent monopixels (p12).
![]() |
||
(A6) | ||
(A7) |
For tripixels there is a complication since the easiest thing to compute
is the probability to get a geometrical tripixel, but what
one is really interested in is the probability
to get a
tripixel with maximum charge at the corner
(other tripixels cannot be confused with a regular X-ray
and can be rejected straight away).
(and T3) is the probability to construct a tripixel from
mono- and bipixels. It is written as the sum of that with no bipixel
(requiring three monopixels),
plus that with one (or more) bipixel of a single orientation
(requiring one additional monopixel),
plus that with bipixels of both orientations.
I obtain an estimate of T3 by noting that
a) exactly one third of tripixels from
three monopixels have maximum energy at the corner;
b) for tripixels formed from one bipixel plus one monopixel only
half the bipixels have their maximum charge at the corner, and
that charge has at most a 50% chance of being larger
than that of the monopixel;
and c) for tripixels formed from two bipixels only
the case when none of the bipixels has maximum charge at the corner
is excluded.
The last two contributions to T3 (b and c) can only be estimated
approximately.
![]() |
||
(A8) | ||
(A9) |
For clean quadripixels (Fig. 1, bottom right)
the exclusion areas are [16, 20, 24, 25].
For (all quadripixels) one must remove the four pixels of the pattern
for monopixels, two pixels for bipixels of any orientation
and one pixel for tri- and quadripixels, from the exclusion areas.
Q3 below is the probability to get a quadripixel event from mono-, bi-
and tripixels. Q2 is the probability to get a quadripixel event from
mono- and bipixels only. In Q3 the second term (subtracted)
is the probability to have no tripixel
and not the right combination of mono- or bipixels.
The rightmost term (also subtracted) is the probability
to have one (or more) tripixel of a single orientation and no bipixel
or monopixel filling the hole. All other combinations form a quadripixel.
Q2 is written as the sum of the probability to get a quadripixel
with no bipixel
(requiring four monopixels), plus that with a bipixel at a single place
in a single orientation (requiring two additional monopixels),
plus that with bipixels of both orientations but no two
parallel bipixels (requiring one additional monopixel),
plus that with two parallel bipixels.
![]() |
||
(A10) | ||
(A11) |
Copyright The European Southern Observatory (ESO)