next previous
Up: Spectral distributions in compact


Subsections

Appendix

Calculation of the local curvature of the fitted and theoretical spectral forms

Linear spectral forms

With the fitted polynomial coefficients $a_0,...\, a_3$, we can write a linear form of the fit as:
\begin{displaymath}
S(\nu) = C_0 \exp(\tau)\,,\end{displaymath} (A1)
with $C_0 = \exp(a_0)$ and

\begin{displaymath}
\tau = \sum^3_{i=1} a_i (\ln \nu)^i \, .\end{displaymath}

And the derivatives used in (14) are given by the following formulae:
\begin{displaymath}
\frac{{\rm d}S}{{\rm d}\nu} = C_0 \exp(\tau) \frac{{\rm d}\tau}{{\rm d}\nu}\end{displaymath} (A2)

\begin{displaymath}
\frac{{\rm d}^2S}{{\rm d}{\nu}^2} = C_0 \left[\exp(\tau) \fr...
 ...d}{\nu}^2} +
\exp(2\tau) \frac{{\rm d}\tau}{{\rm d}\nu} \right]\end{displaymath} (A3)

\begin{displaymath}
\frac{{\rm d}\tau}{{\rm d}\nu} = \frac{1}{\nu} [a_1 + 2a_2 \ln\nu +
3a_3(\ln\nu)^2]\end{displaymath} (A4)

\begin{displaymath}
\frac{{\rm d}^2\tau}{{\rm d}{\nu}^2} = -\frac{1}{\nu^2} [3a_3(\ln\nu)^2 +
(2a_2\, -\, 6a_3)\ln\nu + (a_1\, -\, 2a_2)].\end{displaymath} (A5)
The power-law fit is given by:
\begin{displaymath}
S(\nu) = C_1 \left(\frac{\nu}{\nu_1}\right)^{\alpha_{\rm t}}...
 ...\nu_1}\right)^{\alpha_{\rm o}-\alpha_{\rm t}}\right]\right\}\,,\end{displaymath} (A6)
with the corresponding derivatives:
\begin{displaymath}
\frac{{\rm d}S}{{\rm d}\nu} = C_1\left[\nu^{\alpha_{\rm t}} ...
 ...d}\nu} + \alpha_{\rm t}\nu^{(\alpha_{\rm t}-1)} f_{\nu}\right] \end{displaymath} (A7)
\begin{eqnarray}
\frac{{\rm d}^2S}{{\rm d}{\nu}^2} & = & C_1\Bigg[\nu^{\alpha_{\...
 ...uad\quad\quad\quad
+ (\alpha_{\rm t}-1)\alpha_{\rm t}f_{\nu}\Bigg]\end{eqnarray} (A8)

\begin{displaymath}
f_{\nu} = 1 - \exp\left[-\left(\frac{\nu}{\nu_1}\right)^{\lambda}\right]\,,\quad
\lambda=\alpha_{\rm o}-\alpha_{\rm t}\end{displaymath} (A9)

\begin{displaymath}
\frac{{\rm d}f_{\nu}}{{\rm d}\nu} =
\frac{\lambda\nu^{\lambd...
 ...}}
\,\exp\left[-\left(\frac{\nu}{\nu_1}\right)^{\lambda}\right]\end{displaymath} (A10)

\begin{displaymath}
\frac{{\rm d}^2f_{\nu}}{{\rm d}\nu^2}\! =\! \frac{\lambda
\n...
 ...\!\!\left[-\!\left(\frac{\nu}{\nu_1}\right)^{\lambda}\!\right].\end{displaymath} (A11)

Logarithmic spectral forms

Following the same considerations, the logarithmic form for the polynomial fit and its derivatives are:
\begin{displaymath}
S_{\rm log}(\nu) = \sum^3_{i=0} a_i(\ln\nu)^i\end{displaymath} (A12)

\begin{displaymath}
\frac{{\rm d}S_{\rm log}}{{\rm d}(\ln\nu)} = a_1+2a_2\nu+3a_3\nu^2\end{displaymath} (A13)

\begin{displaymath}
\frac{{\rm d}^2S_{\rm log}}{{\rm d}(\ln\nu)^2} = 2a_2+6a_3\nu.\end{displaymath} (A14)
And for the power-law fit:
\begin{displaymath}
S_{\rm log}(\nu) = \ln C_1 + \alpha_{\rm t}(\ln\nu - \ln\nu_1) + \ln f_{\nu}\end{displaymath} (A15)

\begin{displaymath}
\frac{{\rm d}\,f_{\nu}}{{\rm d}(\ln\nu)} = \lambda
\left(\fr...
 ...da}\,\exp\left[-\left(\frac{\nu}{\nu_1}\right)^{\lambda}\right]\end{displaymath} (A16)

\begin{displaymath}
\frac{{\rm d}^2f}{{\rm d}(\ln\nu)^2} = \lambda^2 \left(\frac...
 ...,\exp\!\!\left[-\left(\frac{\nu}{\nu_1}\right)^{\lambda}\right]\end{displaymath} (A17)

\begin{displaymath}
\frac{{\rm d}S_{\rm log}}{{\rm d}(\ln\nu)} = \frac{1}{f_{\nu}}\frac{{\rm d}f_{\nu}}{{\rm d}(\ln\nu)} + \alpha_{\rm t}\end{displaymath} (A18)

\begin{displaymath}
\frac{{\rm d}^2S_{\rm log}}{{\rm d}(\ln\nu)^2} = \frac{1}{f^...
 ...
\left(\frac{{\rm d}f_{\nu}}{{\rm d}(\ln\nu)}\right)^2 \right].\end{displaymath} (A19)


next previous
Up: Spectral distributions in compact

Copyright The European Southern Observatory (ESO)