next previous
Up: Forbidden transitions in Li-like


3 Generating ${\sl \Omega}(E,Z)$ or ${\sl \Upsilon}(T,Z)$ from the Smn matrices

Since we have type 2 transitions (instead of type 1) and include relativistic corrections, Eqs. (62) to (65) of B&T become

\begin{displaymath}
{\sl \Upsilon} = (Z+1)^{-2} \, (1 + \epsilon E_{ij} + \mu T (2 + \epsilon 
 E_{ij} + 2 \mu T ) ) \; {\rm spline}\end{displaymath}

$(P_1,P_2,P_3,P_4,P_5,T_{\rm r}) \, ,$(62*)


where

\begin{displaymath}
P_n = {\rm spline}(S_{1n},S_{2n},S_{3n},S_{4n},S_{5n},Z_{\rm r}) \; \;
 (1 \leq n \leq 5) \, ,
\eqno(\rm 63^*)\end{displaymath}

\begin{displaymath}
T_{\rm r} = {{kT/E_{ij} } \over {kT/E_{ij} + C_T}} \, ,
\eqno(\rm 64^*)\end{displaymath}

\begin{displaymath}
Z_{\rm r} = {Z \over {Z + C_Z}} \, .
\eqno(\rm 65^*)\end{displaymath}

Correspondingly, for ${\sl \Omega}$, we have

\begin{displaymath}
{\sl \Omega} = (Z+1)^{-2} \, ( 1 + \epsilon \, E_i)( 1 + \epsilon \, E_j)
 \; {\rm spline}\end{displaymath}

$(P_1,P_2,P_3,P_4,P_5,E_{\rm r}) \, ,$(62*')


where

\begin{displaymath}
E_{\rm r} = {{E_j/E_{ij} } \over {E_j/E_{ij} + C_E}}.
\eqno(\rm 64^{*'})\end{displaymath}




next previous
Up: Forbidden transitions in Li-like

Copyright The European Southern Observatory (ESO)