next previous
Up: Atomic data from

2. The calculation

The basic atomic theory employed in the IRON Project, including methodology and computer codes, is described in IP I. Collision strengths for fine structure transitions are calculated from collision data obtained in LS coupling by using an algebraic transformation to intermediate coupling, as described in Sect. 2.6 of IP I (see also Saraph 1978). This method neglects the fine structure splitting of the target terms.

2.1. The target

Here we take account of the autoionization processes that can affect the cross section of the fine structure transition in the 2Ptex2html_wrap_inline2212 ground term at collision energies up to that required to excite the 28th target term tex2html_wrap_inline2214. Thus the energy range covered by the present paper is twice that of IP IV for the lighter ions and ten times that for the iron group ions. The dominant configuration in terms 3 to 28 is tex2html_wrap_inline2216, where 3l is a spectroscopic orbital with tex2html_wrap_inline2220. We take the radial orbitals tex2html_wrap_inline2222 from Clementi & Roetti (1974) and calculate tex2html_wrap_inline2224 using Hibbert's (1975) program CIV3. The parameterised form of P3l(r) is the one used by Clementi & Roetti (1974), namely


equation240
where
equation246

Our choice for the integers tex2html_wrap_inline2228 in Eqs. (1) and (2) is tex2html_wrap_inline2230 for l = 0, tex2html_wrap_inline2234 for l = 1 and tex2html_wrap_inline2238 for l = 2. The values we give in Table 2 for C3lp and tex2html_wrap_inline2244 were obtained following the procedure adopted by Mohan & Hibbert (1991). That is to say, the parameters of each P3l were varied in order to minimise the energies of selected terms: tex2html_wrap_inline2248 for 3s; tex2html_wrap_inline2250 for 3p; tex2html_wrap_inline2252 for 3d. Having obtained satisfactory n = 3 orbitals for singly ionized neon we then used the Ne+ parameters as initial trial values for Na+2. The optimised parameters obtained in this way for Na+2 were then used as trial values for Mg+3 and so on along the sequence as far as Ni+19. In all cases we used the minimization code MODDAV by setting the CIV3 parameter IDAVID = 0.

Mohan & Hibbert (1991) have obtained spectroscopic n = 3 orbitals with CIV3 for six of the ions dealt with here. Our tex2html_wrap_inline2268 orbitals are in satisfactory agreement with theirs, except for tex2html_wrap_inline2270. We have no explanation why Mohan & Hibbert's tex2html_wrap_inline2272 parameters for these two ions deviate from the smooth behaviour exhibited lower down the sequence. Figures 1a and 1b, which make use of the isoelectronic fitting procedure proposed by Burgess et al. (1997a), illustrate this point.

Blackford & Hibbert (1994) have also studied fluorine-like ions using CIV3, but their n=3 orbitals are non-spectroscopic.

  figure268
Figure 1: Full line curves are cubic spline fits to data in Table 2 with rms errors a) 0.5% and b) 0.01%. The starred points tex2html_wrap_inline2276 correspond to results from Mohan & Hibbert (1991)

Table 1 lists the configurations that we include for the construction of the target terms. The first 28 terms that can be constructed from these configurations were included in the close-coupling expansion for the scattering calculation. They have dominant configurations labelled 1 to 11 and their calculated energies are given in Table 3, where a scaling factor (Z-9)-2 is applied for convenience.

 

Label Configuration Label Configuration
1tex2html_wrap_inline2282 11tex2html_wrap_inline2284
2tex2html_wrap_inline2286 12tex2html_wrap_inline2288
3tex2html_wrap_inline2290 13tex2html_wrap_inline2292
4tex2html_wrap_inline2294 14tex2html_wrap_inline2296
5tex2html_wrap_inline2298 15tex2html_wrap_inline2300
6tex2html_wrap_inline2302 16tex2html_wrap_inline2304
7tex2html_wrap_inline2306 17 tex2html_wrap_inline2308
8tex2html_wrap_inline2310 18tex2html_wrap_inline2312
9tex2html_wrap_inline2314 19tex2html_wrap_inline2316
10tex2html_wrap_inline2318 20tex2html_wrap_inline2320
Correlation configurations
tex2html_wrap_inline2322
tex2html_wrap_inline2324
tex2html_wrap_inline2326
tex2html_wrap_inline2328
tex2html_wrap_inline2330
tex2html_wrap_inline2332
Table 1: Configurations that give rise to the 28 lowest terms of fluorine-like ions. Parent terms are shown and each configuration includes tex2html_wrap_inline2280. Correlation configurations used in the target are also listed

 

 

Z nlp=301 nlp=302 nlp=303 nlp=311 nlp=312 nlp=321 nlp=322
108.0952463.2667391.1634103.5302360.923711 2.4628230.687194
0.099730tex2html_wrap_inline23600.3568871.0362620.260780tex2html_wrap_inline23601.0006340.0314880.991278
118.9198633.5678211.5156444.0093711.2566993.1369741.046041
0.120510tex2html_wrap_inline23600.4510411.0747910.320611tex2html_wrap_inline23601.0121960.0490180.981038
12 9.6901803.883820 1.850745 4.4808931.580585 3.791358 1.403897
0.135930tex2html_wrap_inline23600.5256401.1151000.367303tex2html_wrap_inline23601.025859 0.058978 0.972880
13 10.429934.205650 2.183463 4.9453761.900644 4.427342 1.758242
0.148996tex2html_wrap_inline23600.5919661.1563960.403524tex2html_wrap_inline23601.040423 0.063832 0.967407
14 11.148134.530462 2.515404 5.4040152.218909 5.050042 2.109039
0.160455tex2html_wrap_inline23600.6529791.1975790.434109tex2html_wrap_inline23601.054911 0.065677 0.964041
15 11.852684.854268 2.847533 5.8571342.536399 5.662291 2.456780
0.170602tex2html_wrap_inline23600.7087731.2385240.465932tex2html_wrap_inline23601.068586 0.065850 0.962103
16 12.544605.177604 3.179915 6.3058092.853645 6.267704 2.802139
0.179721tex2html_wrap_inline23600.7615151.2787620.483432tex2html_wrap_inline23601.082715 0.065052 0.961141
17 13.227865.499258 3.512871 6.7503483.170891 6.867074 3.145558
0.172211tex2html_wrap_inline23600.7562121.3101720.503925tex2html_wrap_inline23601.0958170.0637410.960803
18 13.900645.820202 3.846325 7.1915393.488298 7.462762 3.487506
0.195803tex2html_wrap_inline23600.8595681.3571240.522634tex2html_wrap_inline23601.108325 0.062132 0.960898
19 14.567886.137855 4.180618 7.6299623.805878 8.055196 3.828262
0.202908tex2html_wrap_inline23600.9056101.3954780.539956tex2html_wrap_inline23601.120237 0.060383 0.961273
20 15.228006.453572 4.515461 8.0652014.123840 8.644899 4.167991
0.209521tex2html_wrap_inline23601.9500611.4331880.555645tex2html_wrap_inline23601.1316620.0585930.961825
21 15.884716.761167 4.852479 8.4973784.442167 9.232155 4.506887
0.215631tex2html_wrap_inline23600.9946451.4720430.569899tex2html_wrap_inline23601.142626 0.056812 0.962487
2216.533457.0698135.1891068.9275724.7607889.8178334.845138
0.221396tex2html_wrap_inline23601.0371521.5094940.583375tex2html_wrap_inline23601.1530840.0550630.963224
2317.173907.3753415.5263149.3560975.07961310.402255.182819
0.226692tex2html_wrap_inline23601.0786261.5467020.596156tex2html_wrap_inline23601.1630550.0533650.964003
24 17.813157.677423 5.864517 9.7821905.398982 10.98535 5.520072
0.231902tex2html_wrap_inline23601.1201291.5841030.608036tex2html_wrap_inline23601.1726680.0517320.964801
25 18.447087.979157 6.202479 10.206995.718553 11.56755 5.856933
0.236923tex2html_wrap_inline23601.1604601.6206040.619405tex2html_wrap_inline23601.1818510.0501660.965604
26 19.084868.266246 6.544050 10.629086.038546 12.14856 6.193407
0.249244tex2html_wrap_inline23601.2524451.6995520.629756tex2html_wrap_inline23601.1907420.0486760.966397
27 19.700048.571291 6.880852 11.050776.358677 12.73139 6.526987
0.246277tex2html_wrap_inline23601.2406951.6944650.639960tex2html_wrap_inline23601.1992140.0471530.967271
28 20.329278.847834 7.223726 11.470056.679255 13.31948 6.864242
0.250387tex2html_wrap_inline23601.2842601.7361720.649441tex2html_wrap_inline23601.2074380.046126 0.967818
Table 2: Fluorine sequence: radial orbital parameters. For each Z, nlp the upper (lower) number is the value of tex2html_wrap_inline2336 (Cnlp)

 

 

LabelTerm Z=12Z=13Z=14Z=15Z=16Z=17
11 tex2html_wrap_inline25220.765090.574710.471130.406550.362630.33091
8 tex2html_wrap_inline25220.733540.555000.457450.396420.354760.32460
8 tex2html_wrap_inline25260.731450.553770.456700.395930.354440.32437
8 tex2html_wrap_inline25280.733260.554110.456180.394930.353170.32295
8 tex2html_wrap_inline25300.731620.552970.455340.394270.352630.32250
8 tex2html_wrap_inline25320.727570.549550.452390.391680.350330.32043
5 tex2html_wrap_inline25220.700690.534180.442360.384540.344920.31614
5 tex2html_wrap_inline25260.701670.534320.442110.384100.344400.31559
5 tex2html_wrap_inline25280.696900.530810.439480.382090.342830.31435
5 tex2html_wrap_inline25400.696730.530450.439050.381650.342390.31392
5 tex2html_wrap_inline25420.694300.52849 0.437410.380240.341160.31283
5 tex2html_wrap_inline25440.688620.523900.433570.376940.338270.31026
10 tex2html_wrap_inline25460.695240.524860.432640.375320.336410.30835
7 tex2html_wrap_inline25460.681380.516660.427000.371090.333040.30557
7 tex2html_wrap_inline25500.661770.502870.416510.362710.326110.29968
7 tex2html_wrap_inline25520.654140.497470.412380.359360.323320.29729
4 tex2html_wrap_inline25540.628930.482020.401650.351330.316980.29210
4 tex2html_wrap_inline25560.628930.482020.401650.351330.316980.29210
4 tex2html_wrap_inline25500.625330.47946 0.399680.349740.315650.29095
4 tex2html_wrap_inline25460.629490.481410.400670.350250.315900.29105
4 tex2html_wrap_inline25620.619270.475200.396430.347120.313470.28909
9 tex2html_wrap_inline25300.632680.480770.398780.347930.313470.28865
4 tex2html_wrap_inline25660.611160.469440.392000.343540.310480.28652
6 tex2html_wrap_inline25220.598170.458350.382640.335270.303170.27999
3 tex2html_wrap_inline25260.571450.441530.370570.326180.295890.27396
3 tex2html_wrap_inline25400.55856 0.432890.364180.321160.291790.27051
2 tex2html_wrap_inline25300.329160.210740.151270.116440.093610.07830
1 tex2html_wrap_inline25460.000000.000000.000000.000000.000000.00000
Table 3: Theoretical term energies for the fluorine sequence in tex2html_wrap_inline2508. Label refers to configurations given in Table 1

 

 

LabelTerm Z=18Z=19Z=20Z=21Z=22Z=23
11 tex2html_wrap_inline25220.306960.288260.273270.260990.25075 0.24208
8 tex2html_wrap_inline25220.301760.283880.269510.257720.24787 0.23952
8 tex2html_wrap_inline25260.301600.283760.269430.257660.24782 0.23949
8 tex2html_wrap_inline25280.300100.282250.267910.256160.24636 0.23805
8 tex2html_wrap_inline25300.299720.281910.267610.255890.24611 0.23783
8 tex2html_wrap_inline25320.297840.280190.266040.254440.24479 0.23656
5 tex2html_wrap_inline25220.294320.277230.263480.252200.24278 0.23479
5 tex2html_wrap_inline25260.293770.276690.262970.251710.24231 0.23434
5 tex2html_wrap_inline25280.292760.275860.262270.251120.24180 0.23390
5 tex2html_wrap_inline25400.292360.275470.261910.250770.24147 0.23359
5 tex2html_wrap_inline25420.291370.274580.261090.250020.24077 0.23293
5 tex2html_wrap_inline25440.289070.272490.259180.248260.23914 0.23142
10 tex2html_wrap_inline25460.287200.270700.257460.246620.23758 0.22994
7 tex2html_wrap_inline25460.284840.268650.255660.245010.23613 0.22862
7 tex2html_wrap_inline25500.279720.264120.251610.241360.23281 0.22556
7 tex2html_wrap_inline25520.277620.262260.249940.239840.23142 0.22428
4 tex2html_wrap_inline25540.273260.258510.246670.236950.22882 0.22194
4 tex2html_wrap_inline25560.273260.258510.246670.236950.22882 0.22194
4 tex2html_wrap_inline25500.272260.257620.245860.236220.22816 0.22132
4 tex2html_wrap_inline25460.272260.257560.245760.236090.22802 0.22117
4 tex2html_wrap_inline25620.270630.256180.244570.235040.22708 0.22033
9 tex2html_wrap_inline25300.269930.255340.243650.234070.22610 0.21935
4 tex2html_wrap_inline25660.268380.254180.242770.233420.22560 0.21896
6 tex2html_wrap_inline25220.262480.248810.237850.228860.22136 0.21501
3 tex2html_wrap_inline25260.257350.244360.233920.225360.21820 0.21214
3 tex2html_wrap_inline25400.254380.241760.231610.223280.21632 0.21041
2 tex2html_wrap_inline25300.066930.058310.051570.046170.04176 0.03810
1 tex2html_wrap_inline25460.000000.000000.000000.000000.00000 0.00000
Table 3: continued

 

LabelTerm Z=24Z=25Z=26Z=27Z=28
11 tex2html_wrap_inline25220.234650.228220.222610.217620.21321
8 tex2html_wrap_inline25220.232350.226130.220710.215870.21159
8 tex2html_wrap_inline25260.232330.226120.220710.215870.21160
8 tex2html_wrap_inline25280.230930.224760.219390.214600.21036
8 tex2html_wrap_inline25300.230730.224570.219200.214430.21020
8 tex2html_wrap_inline25320.229540.223450.218150.213430.20926
5 tex2html_wrap_inline25220.227930.221990.216800.212180.20810
5 tex2html_wrap_inline25260.227500.221580.216410.211810.20774
5 tex2html_wrap_inline25280.227120.221240.216120.211550.20750
5 tex2html_wrap_inline25400.226820.220950.215840.211280.20725
5 tex2html_wrap_inline25420.226210.220380.215300.210770.20677
5 tex2html_wrap_inline25440.224800.219050.214040.209590.20564
10 tex2html_wrap_inline25460.223380.217710.212740.208360.20447
7 tex2html_wrap_inline25460.222170.216590.211700.207390.20356
7 tex2html_wrap_inline25500.219350.213970.209260.205100.20141
7 tex2html_wrap_inline25520.218170.212860.208230.204130.20049
4 tex2html_wrap_inline25540.216030.210900.206410.202440.19892
4 tex2html_wrap_inline25560.216030.210900.206410.202440.19892
4 tex2html_wrap_inline25500.215460.210370.205910.201980.19848
4 tex2html_wrap_inline25460.215300.210210.205760.201820.19832
4 tex2html_wrap_inline25620.214540.209520.205120.201230.19777
9 tex2html_wrap_inline25300.213560.208550.204160.200300.19686
4 tex2html_wrap_inline25660.213270.208330.204010.200190.19679
6 tex2html_wrap_inline25220.209570.204850.200710.197070.19383
3 tex2html_wrap_inline25260.206930.202410.198450.194960.19185
3 tex2html_wrap_inline25400.205340.200940.197090.193680.19066
2 tex2html_wrap_inline25300.035000.032360.030080.028090.02634
1 tex2html_wrap_inline25460.000000.000000.000000.000000.00000
Table 3: continued

2.2. Collision strength tex2html_wrap_inline2718

The results for tex2html_wrap_inline2128 from the extended target join on fairly smoothly at the tex2html_wrap_inline2722 threshold to those from the 2-term calculation (IP IV). This is because, as predicted in IP IV, resonances caused by the 26 higher terms start to enhance the collision strength at energies well above tex2html_wrap_inline2722 for ions with tex2html_wrap_inline2726. The 26 terms arising from configurations tex2html_wrap_inline2728 with tex2html_wrap_inline2730, lie energetically close together and this means that the associated resonances form a dense "forest'' of spikes covering a broad energy region. The widths of these spikes and the windows between them are very narrow compared to that of the electron velocity distribution function. Since it is our aim to calculate effective collision strengths it is not necessary, at these high excitation energies, to identify individual resonances, or to obtain their positions to high accuracy. Instead we obtain the collision strength to sufficient detail so that the average is correct. In any case, measurements that might allow one to replace calculated term energies by experimental values are incomplete for the higher terms and therefore we could not correct the target term energies empirically as was done in IP IV. At low temperatures, it will be recalled, the width of the velocity distribution function and those of the resonances are comparable and therefore the correct positioning of the low energy resonances due to the term tex2html_wrap_inline2130 dramatically affects the low temperature effective collision strength of several ions.

We illustrate the complicated energy dependence of our collision strengths by plotting tex2html_wrap_inline2734 in Figs. 2 to 10 as a function of tex2html_wrap_inline2736 from threshold (i.e. tex2html_wrap_inline2738) to a value just above that necessary to excite the 28th term. The collision strength is obtained using different steplengths in four distinct energy bands. From threshold up to tex2html_wrap_inline2740S we use the collision strength obtained in IP IV. Then at energies between the second and third terms, i.e. between tex2html_wrap_inline2740S and tex2html_wrap_inline2744P, the collision strength is calculated using an energy mesh based on equal steps in effective quantum number tex2html_wrap_inline2746, see IP IV. This mesh is ideal for delineating the resonance structure in this interval and about 3600 mesh points are used for each ion. Partial wave contributions are summed up to J=7. The energy range from just below the 3rd term and up to the 28th term was scanned at constant steps in energy tex2html_wrap_inline2750: between the 3rd and 17th terms tex2html_wrap_inline2752 and between the 17th and 28th terms tex2html_wrap_inline2754, where x varies between x= 3 for the lighter ions and x=1 for the heavier ones. We found that the resonances were in all cases less prominent at energies between terms 17 and 28 which is why we could use a coarser mesh. From the 3rd threshold onwards, i.e. for tex2html_wrap_inline2762, partial waves were summed up to J = 10. At energies above all 28 thresholds collision strengths were obtained on a very coarse mesh but particular attention was paid to the convergence with respect to angular momentum J. The contributions from the two highest partial waves (J= 9 and 10) were taken to fit a geometric series and thus used to estimate a top-up to the collision strengths. Near the energy of the 28th term this top-up amounted to about 2% of the total and it gradually increased to 10% at around four times that energy. Tabulation was stopped at this point and, for the purpose of calculating effective collision strengths, the high energy results were then spline fitted including a value at tex2html_wrap_inline2770 obtained in the Born approximation (Burgess et al. 1997b). These limiting Born values are given in Table 4.

  figure430
Figure 2: tex2html_wrap_inline2772: tex2html_wrap_inline2774

  figure438
Figure 3: tex2html_wrap_inline2772: tex2html_wrap_inline2774

  figure446
Figure 4: tex2html_wrap_inline2772: tex2html_wrap_inline2774

  figure454
Figure 5: tex2html_wrap_inline2772: tex2html_wrap_inline2774

  figure462
Figure 6: tex2html_wrap_inline2772: tex2html_wrap_inline2774

  figure470
Figure 7: tex2html_wrap_inline2772: tex2html_wrap_inline2774

  figure479
Figure 8: tex2html_wrap_inline2772: tex2html_wrap_inline2774

  figure488
Figure 9: tex2html_wrap_inline2772: tex2html_wrap_inline2774

  figure497
Figure 10: tex2html_wrap_inline2772: tex2html_wrap_inline2774

 

Ion (a) (b) (c)
F 4.040 3.6090.00368
Ne+ 2.678 4.6000.00711
Na+2 1.922 4.9990.01245
Mg+3 1.452 5.2050.02031
Al+4 1.137 5.3750.03138
Si+5 0.91565.5430.04642
P+6 0.75405.7060.06628
S+7 0.63175.8570.09191
Cl+8 0.53735.9910.12432
Ar+9 0.46286.1110.16462
K+10 0.40276.2170.21402
Ca+110.35376.3120.27379
Sc+120.31336.3960.34532
Ti+130.27936.4710.43008
V+14 0.25086.5380.52963
Cr+150.22626.5990.64562
Mn+160.20526.6540.77982
Fe+170.18706.7040.93408
Co+180.17116.7501.11036
Ni+190.15726.7921.31071
Table 4: (a) High energy limiting values of tex2html_wrap_inline2808 obtained by spline fitting the Born results of Burgess et al. (1997b) in the manner proposed by Burgess et al. (1997a). (b) Logarithm of the temperature of maximum coronal abundance obtained by spline fitting the data given in Arnaud & Rothenflug (1985), see Burgess et al. (1997a). (c) The fine structure transition energy tex2html_wrap_inline2810 in Ry from Edlén's (1969) fit to observed intervals

 

2.3. Effective collision strength tex2html_wrap_inline2868

Seaton (1953) defines the thermally averaged, or effective, collision strength tex2html_wrap_inline2870 for a transition tex2html_wrap_inline2872 to be the integral
equation543

Since our calculation is in LS coupling it ignores the fine structure energy splitting. This means that the incident and final collision energies Ei, Ef are identical. In Table 5 we tabulate tex2html_wrap_inline2868 as a function of logtex2html_wrap_inline2140, where tex2html_wrap_inline2142 is a scaled temperature that is convenient to use for the fluorine isoelectronic sequence. The present results agree with those in IP IV except at the highest temperature for each ion considered in IP IV where the earlier results are usually a few percent lower.

 

log tex2html_wrap_inline2892 Z=12Z=13Z=14Z=15Z=16Z=17
3.0 3.579-15.136-13.014-12.570-1 2.408-12.691-1
3.2 3.605-14.895-13.793-12.600 -12.674-12.859-1
3.4 3.679-14.703-14.176-12.751 -12.883-12.881-1
3.6 3.827-14.637-14.351-12.923-12.968-12.799-1
3.8 4.045-14.636-14.340-13.045-12.974-12.725-1
4.0 4.289-14.625-14.241-13.147-12.996-12.734-1
4.2 4.482-14.549-14.081-13.193-12.986-12.721-1
4.4 4.518-14.328-13.796-13.071-12.824-12.552-1
4.6 4.334-13.937-13.369-12.764-12.500-12.233-1
4.8 3.960-13.444-12.872-12.362-12.103-11.855-1
5.0 3.491-12.941-12.393-11.967-11.724-11.503-1
log tex2html_wrap_inline2892Z=18Z=19Z=20Z=21Z=22Z=23
3.0 4.206-11.418-11.577-11.852-12.168-1 1.000-1
3.2 3.572-11.602-11.702-11.800-11.916-1 1.107-1
3.4 3.093-11.723-11.734-11.698-11.697-1 1.143-1
3.6 2.736-11.779-11.719-11.609-11.567-1 1.183-1
3.8 2.541-11.866-11.769-11.630-11.590-1 1.312-1
4.0 2.511-12.010-11.889-11.737-11.694-1 1.475-1
4.2 2.488-12.082-11.939-11.779-11.717-1 1.531-1
4.4 2.321-11.976-11.821-11.664-11.585-1 1.426-1
4.6 2.014-11.724-11.573-11.431-11.348-1 1.215-1
4.8 1.656-11.420-11.286-11.165-11.087-1 9.786-2
5.0 1.327-11.138-11.026-19.273-28.576-2 7.700-2
log tex2html_wrap_inline2892Z=24Z=25Z=26Z=27Z=28
3.0 1.004-11.062-11.091-11.033-19.624-2
3.2 1.073-11.083-11.048-19.679-28.698-2
3.4 1.081-11.055-19.811-29.036-28.019-2
3.6 1.112-11.080-19.694-29.112-28.175-2
3.8 1.235-11.221-11.055-11.012-19.280-2
4.0 1.382-11.380-11.165-11.123-11.044-1
4.2 1.419-11.417-11.187-11.137-11.064-1
4.4 1.308-11.299-11.088-11.034-19.695-2
4.6 1.105-11.088-19.165-28.644-28.103-2
4.8 8.845-28.638-27.317-26.862-26.432-2
5.0 6.920-26.695-25.715-25.341-25.004-2
Table 5: Fluorine sequence: thermally averaged collision strength tex2html_wrap_inline2886 as a function of the atomic number Z and the logarithm of the scaled temperature tex2html_wrap_inline2142

 

 

Ztex2html_wrap_inline33261,22,33,28 28,tex2html_wrap_inline3334
143.0100000
4.0851410
5.02832931
20 3.0100 0 0 0
4.048 50 1 1
5.012 54 5 29
26 3.099 1 0 0
4.031 67 1 1
5.07 61 4 27
Table 6: Showing how percentage contributions to tex2html_wrap_inline2138 from four energy bands vary with temperature. The first 3 bands are identified by pairs of indices which label initial and final term energies. For example, the column headed tex2html_wrap_inline3308 is for integration from tex2html_wrap_inline3310 to tex2html_wrap_inline3312. Term energies are measured relative to the ground term, i.e. tex2html_wrap_inline3314. The last column is for the band that extends from tex2html_wrap_inline3316 to tex2html_wrap_inline3318. tex2html_wrap_inline2892 is the scaled temperature defined by tex2html_wrap_inline2142

 

It is important to understand the validity of approximations made in the current scattering calculations. First, one establishes the range of temperatures over which data are required. Next, one determines the range of energies for which accurate collision data need to be calculated. Table 6 shows the relative contributions to the total effective collision strength from the four different energy bands defined in Sect. 2.2 as a function of temperature. As discussed in IP IV, the isolated resonances in the first band must be delineated to the best possible accuracy because the velocity distribution function emphasizes these structures in a very selective way. Resonances in the second band are narrower relative to the width of the distribution function. Consequently the exact position is no longer so crucial but good delineation is still very important. This is ensured by the use of a steplength tex2html_wrap_inline3336 that is a function of effective quantum number tex2html_wrap_inline2746 calculated relative to the third target term tex2html_wrap_inline3340. The step size therefore decreases as tex2html_wrap_inline3342, where tex2html_wrap_inline3344 is the energy separation from the third target term. The third band would pose considerable computational problems if one wanted to cover it using a fixed steplength tex2html_wrap_inline3336 because of the many overlapping resonances from different channels. However, their mean contribution to the total effective collision strength can be obtained by using energy sampling at a moderately small steplength tex2html_wrap_inline3348 (see Saraph & Storey 1996). The last (i.e. fourth) band contributes very little although it is infinite in size. In order to include all collision channels here one would have to increase the close coupling expansion further and further, including also continuum states beyond the ionization threshold. Such calculations are very demanding on computer time (see Pelan & Berrington 1997), but fortunately they are not necessary for the present purposes. The ions considered in this paper have maximum coronal abundances at temperatures between 105 K and 107 K, and the present calculations are accurate for these temperatures because the higher energy bands, for which this calculation is rather crude, contribute relatively little.

We note that the present high temperature results tend to the Born limit where tex2html_wrap_inline3354. Values of the limit for neutral fluorine and all ions in the sequence as far as tex2html_wrap_inline3356 are given in Table 4.


next previous
Up: Atomic data from

Copyright by the European Southern Observatory (ESO)