next previous
Up: Atomic data from

2. The calculation

Paper I gives the basic atomic theory, approximations and computer codes employed in the IRON Project. The CC approximation known as the R-matrix method is used. In the present case we have taken account of channel coupling up to the n=4 levels. Relativistic effects are allowed for as explained later.

The radial orbitals for the Li-like target are as follows: tex2html_wrap_inline1962, tex2html_wrap_inline1964 are from Clementi & Roetti (1974). tex2html_wrap_inline1966 is the 2 exponent function


eqnarray222
which we obtained by using Hibbert's (1975) variational program CIV3 to minimise the energy of the tex2html_wrap_inline1968 term. tex2html_wrap_inline1970 and tex2html_wrap_inline1972 are from Tully et al. (1990). Each remaining orbital Pnl, with tex2html_wrap_inline1976, has the minimum number of exponents dictated by nl. The values of these exponents were calculated using CIV3 to minimise the appropriate tex2html_wrap_inline1980 term energy. The orbital exponents for n=3, 4 are given in Table 1 (click here).

 

 
....
Pnl r1 r2 r3 r4
....
tex2html_wrap_inline1996 14.437 7.9574 8.0058
tex2html_wrap_inline1998 9.600263 7.847094
tex2html_wrap_inline2000 8.0050
tex2html_wrap_inline2002 13.360597 6.031843 6.055029 6.021776
tex2html_wrap_inline2004 8.209951 5.974792 5.957608
tex2html_wrap_inline2006 6.367924 5.971795
tex2html_wrap_inline2008 6.000065
....
Table 1: Exponents for the tex2html_wrap_inline1984 radial orbitals with analytic form similar to that in (1). The coefficients are fixed by orthonormality conditions

Although configuration interaction (CI) wavefunctions are used to describe the target terms, in practice each term is dominated by a single configuration. The target energies used in the collision calculation were, with one important exception, adjusted to match the accurate experimental levels of Reader et al. (1992). These are given in Table 2 (click here) after being converted to Ry (1 Ry = 109737.32 cm-1). The exception concerns each pair of 4l fine-structure levels which we forced to be degenerate with the corresponding LS term.

 

 
i Term j tex2html_wrap_inline2016 uncertainty tex2html_wrap_inline2028

1

tex2html_wrap_inline2030 1/2 0.0
2 tex2html_wrap_inline2032 1/2 3.57201 0.00007 0.004
3 3/2 4.74549 0.00013 -0.014
4 tex2html_wrap_inline2036 1/2 84.497 0.015 0.034
5 tex2html_wrap_inline2038 1/2 85.461 0.024 0.048
6 3/2 85.815 0.025 0.024
7 tex2html_wrap_inline2040 3/2 86.197 0.015 0.034
8 5/2 86.321 0.022 0.019
9 tex2html_wrap_inline2042 1/2 113.584 0.006 0.035
10 tex2html_wrap_inline2044 1/2 113.990 0.015 0.030
11 3/2 114.136 0.015 0.018
12 tex2html_wrap_inline2046 3/2 114.266 0.020 0.050
13 5/2 114.321 0.025 0.040
14 tex2html_wrap_inline2048 5/2 114.342 0.015 0.028
15 7/2 114.379 0.022 0.014
Table 2: Fe XXIV: observed level energies tex2html_wrap_inline2016 in Ry from Reader et al. (1992). tex2html_wrap_inline2018, where tex2html_wrap_inline2020 is from the Breit-Pauli R-matrix calculation

Theoretical LS-coupling oscillator strengths calculated using the present wavefunctions and observed transition energies (see Table 2 (click here)) are compared in Table 3 (click here) with those which Peach et al. (1988) obtained in the Opacity Project. Our length (L) and velocity (V) forms agree well and there is also fairly good overall agreement between our length oscillator strengths and those of Peach et al. (1988). This suggests that our choice of wavefunctions is satisfactory for computing reliable collision data.

 

Transition L V OP
tex2html_wrap_inline2054 0.0525 0.0606 0.052
tex2html_wrap_inline2056 0.386 0.383 0.386
tex2html_wrap_inline2058 0.0956 0.0944 0.0955
tex2html_wrap_inline2060 0.0881 0.0947 0.0875
tex2html_wrap_inline2062 0.425 0.421 0.424
tex2html_wrap_inline2064 0.122 0.126 0.121
tex2html_wrap_inline1958 0.0170 0.0174 0.017
tex2html_wrap_inline2068 0.00365 0.00376 0.0037
tex2html_wrap_inline2070 0.0399 0.0395 0.0395
tex2html_wrap_inline2072 0.684 0.683 0.683
tex2html_wrap_inline2074 0.122 0.122 0.157
tex2html_wrap_inline2076 0.0149 0.0171 0.0151
tex2html_wrap_inline2078 0.599 0.597 0.598
tex2html_wrap_inline2080 0.0123 0.0124 0.0123
tex2html_wrap_inline2082 0.0263 0.0274 0.0268
tex2html_wrap_inline2084 1.016 1.016
tex2html_wrap_inline2086 0.00076 0.00078
Table 3: Oscillator strengths for Fe+23 calculated in the length (L) and velocity (V) gauge, compared with those from the Opacity Project (Peach et al. 1988)

 

Collision strengths for fine structure transitions are obtained from two R-matrix calculations which we now describe.

BP
is a 15-level fine-structure calculation using the Breit-Pauli Hamiltonian version of the R-matrix program (Berrington et al. 1995). This is the most accurate approach when the collision energy is comparable to the level splitting in the target. This method was used in the scattering energy range up to the highest threshold.

JAJOM
is a 9-term LS-coupling calculation plus a transformation to intermediate coupling which we apply to the reactance matrix using the JAJOM program written by Saraph (1978). This was used from just above the highest threshold up to a scattering energy of 265 Ry. For allowed transitions we use a "top-up" procedure which consists in assuming that beyond J=80 the partial collision strengths form a geometrical series. In this way we are able to complete the sum to infinity of partial waves analytically.

For the purpose of comparing our results numerically with those of Zhang et al. (1990) we choose an energy that lies above the highest target term included in our calculation, namely 4f. The comparison is shown in table 4 (click here) where it can be seen that differences are less than 10% for all transitions out of tex2html_wrap_inline1932. For transitions from the 2p levels the differences are greater with some of them as high as 14%.

 

 
Transition BP DW
tex2html_wrap_inline2096 0.254 0.253
tex2html_wrap_inline2098 0.472 0.475
tex2html_wrap_inline2100 0.0137 0.0151
tex2html_wrap_inline2102 0.0053 0.0054
tex2html_wrap_inline2104 0.0101 0.0099
tex2html_wrap_inline2106 0.0118 0.0118
tex2html_wrap_inline2108 0.0176 0.0177
tex2html_wrap_inline2110 0.0025 0.0029
tex2html_wrap_inline2112 0.0011 0.0010
tex2html_wrap_inline2114 0.0022 0.0020
tex2html_wrap_inline2116 0.0021 0.0020
tex2html_wrap_inline2118 0.0031 0.0030
tex2html_wrap_inline2120 0.0012 0.0011
tex2html_wrap_inline2122 0.0016 0.0014
tex2html_wrap_inline2124 0.0196 0.0191
tex2html_wrap_inline2100 0.0011 0.0010
tex2html_wrap_inline2102 0.0142 0.0155
tex2html_wrap_inline2104 0.0034 0.0034
tex2html_wrap_inline2106 0.0609 0.0613
tex2html_wrap_inline2108 0.0065 0.0056
Table 4: A comparison of R-matrix (BP) and distorted-wave (DW) collision strengths for excitation of Fe+23 at 132.25 Ry. The DW results are from Zhang et al. (1990)

The approximations in each method are comparable at higher energies and any differences here are presumably caused by different "topping" up procedures and possibly by the fact that Zhang et al. (1990) use orbitals obtained by solving the Dirac equation with a Dirac-Fock-Slater potential. We expect really important differences to occur only at lower energies where resonance structures such as those shown in Figs. 1 (click here)-2 (click here) and 4 (click here)-7 (click here) occur. Resonances can have a big effect on effective collision strengths, as seen in Figs. 8 (click here) and 9 (click here).

Thermal averaging of the collision strengths is done using the "linear interpolation" method described by Burgess & Tully (1992). The resulting effective collision strengths tex2html_wrap_inline2136 are given in Table 5 (click here) for the astrophysically important temperature range tex2html_wrap_inline2138 where Fe+23 is abundant under conditions of coronal ionization equilibrium (see Arnaud & Rothenflug 1985). For temperatures below two million degrees the abundance will be negligible. For this reason we begin our tabulation of tex2html_wrap_inline2136 in Table 5 (click here) at logtex2html_wrap_inline2144. Astrophysical situations may exist where Fe+23 is abundant at temperatures lower than this; in these cases one would need to extend the temperature range below tex2html_wrap_inline2148K. This should pose no problem since our collision strengths will be preserved for posterity at the CDS (Centre de données astronomiques de Strasbourg) and some other databanks.

  figure401
Figure 1: tex2html_wrap_inline2150 collision strength shown over the range tex2html_wrap_inline2152 (i.e. from tex2html_wrap_inline1934 to tex2html_wrap_inline2156). Full line: present Breit-Pauli calculation; broken line: DW calculation by Zhang et al. (1990)

  figure412
Figure 2: tex2html_wrap_inline2150 collision strength shown over the range tex2html_wrap_inline2160 (i.e. from tex2html_wrap_inline1934 to tex2html_wrap_inline1936). Full line: present Breit-Pauli calculation; broken line: DW calculation by Zhang et al. (1990)

 

Transition 6.2 6.4 6.6 6.8 7.0 7.2 7.4 7.6 7.8 8.0
tex2html_wrap_inline2096 1.661-1 1.747-1 1.853-1 1.976-1 2.117-1 2.278-1 2.459-1 2.659-1 2.873-1 3.095-1
tex2html_wrap_inline2192 3.172-1 3.331-1 3.523-1 3.744-1 4.000-1 4.298-1 4.642-1 5.027-1 5.445-1 5.884-1
tex2html_wrap_inline2214 1.603-2 1.562-2 1.522-2 1.493-2 1.484-2 1.499-2 1.534-2 1.581-2 1.631-2 1.677-2
tex2html_wrap_inline2236 5.573-3 5.533-3 5.566-3 5.792-3 6.328-3 7.284-3 8.747-3 1.077-2 1.339-2 1.658-2
tex2html_wrap_inline2258 1.038-2 1.041-2 1.052-2 1.097-2 1.198-2 1.378-2 1.650-2 2.027-2 2.511-2 3.101-2
tex2html_wrap_inline2280 1.280-2 1.274-2 1.263-2 1.262-2 1.284-2 1.333-2 1.408-2 1.503-2 1.608-2 1.714-2
tex2html_wrap_inline2302 1.960-2 1.954-2 1.930-2 1.920-2 1.943-2 2.009-2 2.118-2 2.264-2 2.444-2 2.644-2
tex2html_wrap_inline2324 2.497-3 2.507-3 2.526-3 2.559-3 2.621-3 2.719-3 2.842-3 2.976-3 3.105-3 3.224-3
tex2html_wrap_inline2346 1.100-3 1.128-3 1.174-3 1.251-3 1.374-3 1.562-3 1.834-3 2.204-3 2.681-3 3.262-3
tex2html_wrap_inline2368 2.176-3 2.231-3 2.323-3 2.472-3 2.705-3 3.056-3 3.564-3 4.267-3 5.184-3 6.315-3
tex2html_wrap_inline2390 2.095-3 2.090-3 2.086-3 2.086-3 2.098-3 2.129-3 2.188-3 2.277-3 2.397-3 2.537-3
tex2html_wrap_inline2412 3.168-3 3.160-3 3.154-3 3.158-3 3.177-3 3.224-3 3.311-3 3.438-3 3.598-3 3.776-3
tex2html_wrap_inline2434 1.233-3 1.212-3 1.189-3 1.166-3 1.146-3 1.133-3 1.130-3 1.136-3 1.148-3 1.164-3
tex2html_wrap_inline2456 1.646-3 1.618-3 1.587-3 1.556-3 1.529-3 1.511-3 1.506-3 1.515-3 1.538-3 1.568-3
tex2html_wrap_inline2124 3.734-2 4.120-2 4.291-2 4.166-2 3.807-2 3.346-2 2.896-2 2.516-2 2.225-2 2.017-2
tex2html_wrap_inline2500 4.738-3 3.722-3 2.950-3 2.383-3 2.004-3 1.796-3 1.748-3 1.846-3 2.076-3 2.420-3
tex2html_wrap_inline2522 1.650-2 1.604-2 1.562-2 1.529-2 1.513-2 1.517-2 1.538-2 1.569-2 1.602-2 1.634-2
tex2html_wrap_inline2544 7.156-3 6.702-3 5.999-3 5.245-3 4.568-3 4.024-3 3.626-3 3.363-3 3.214-3 3.154-3
tex2html_wrap_inline2566 5.389-2 5.534-2 5.734-2 6.046-2 6.524-2 7.223-2 8.188-2 9.456-2 1.104-1 1.293-1
tex2html_wrap_inline2588 1.267-2 1.189-2 1.063-2 9.202-3 7.834-3 6.629-3 5.633-3 4.859-3 4.296-3 3.913-3
tex2html_wrap_inline2610 4.298-4 4.128-4 3.933-4 3.730-4 3.549-4 3.437-4 3.448-4 3.626-4 3.989-4 4.533-4
tex2html_wrap_inline2632 2.745-3 2.734-3 2.723-3 2.721-3 2.741-3 2.794-3 2.873-3 2.958-3 3.038-3 3.104-3
tex2html_wrap_inline2654 1.402-3 1.343-3 1.268-3 1.179-3 1.081-3 9.818-4 8.916-4 8.177-4 7.634-4 7.283-4
tex2html_wrap_inline2676 9.901-3 1.011-2 1.043-2 1.091-2 1.161-2 1.261-2 1.396-2 1.573-2 1.793-2 2.054-2
tex2html_wrap_inline2698 2.571-3 2.432-3 2.253-3 2.035-3 1.790-3 1.534-3 1.290-3 1.070-3 8.847-4 7.351-4
tex2html_wrap_inline2720 1.698-3 1.711-3 1.742-3 1.802-3 1.900-3 2.046-3 2.245-3 2.492-3 2.772-3 3.063-3
tex2html_wrap_inline2742 1.051-3 9.836-4 8.993-4 8.017-4 6.971-4 5.947-4 5.035-4 4.299-4 3.760-4 3.402-4
tex2html_wrap_inline2764 1.044-2 8.312-3 6.629-3 5.355-3 4.483-3 3.996-3 3.872-3 4.084-3 4.604-3 5.392-3
tex2html_wrap_inline2786 8.007-3 7.342-3 6.490-3 5.632-3 4.886-3 4.303-3 3.888-3 3.624-3 3.487-3 3.444-3
tex2html_wrap_inline2808 4.098-2 4.002-2 3.863-2 3.726-2 3.624-2 3.568-2 3.556-2 3.577-2 3.616-2 3.664-2
tex2html_wrap_inline2830 2.691-2 2.621-2 2.503-2 2.390-2 2.319-2 2.314-2 2.389-2 2.552-2 2.803-2 3.134-2
tex2html_wrap_inline2852 1.108-1 1.129-1 1.156-1 1.202-1 1.279-1 1.399-1 1.569-1 1.795-1 2.080-1 2.419-1
tex2html_wrap_inline2874 8.680-4 8.342-4 7.957-4 7.566-4 7.232-4 7.053-4 7.139-4 7.576-4 8.400-4 9.600-4
tex2html_wrap_inline2896 1.376-3 1.319-3 1.246-3 1.161-3 1.068-3 9.774-4 8.972-4 8.360-4 7.998-4 7.902-4
tex2html_wrap_inline2918 7.294-3 7.216-3 7.123-3 7.040-3 7.016-3 7.078-3 7.204-3 7.349-3 7.479-3 7.580-3
tex2html_wrap_inline2940 5.102-3 4.974-3 4.820-3 4.653-3 4.499-3 4.397-3 4.387-3 4.503-3 4.759-3 5.152-3
tex2html_wrap_inline2962 2.029-2 2.056-2 2.099-2 2.169-2 2.278-2 2.440-2 2.671-2 2.981-2 3.374-2 3.846-2
tex2html_wrap_inline2984 1.908-3 1.823-3 1.721-3 1.610-3 1.502-3 1.411-3 1.350-3 1.326-3 1.338-3 1.376-3
tex2html_wrap_inline3006 3.834-3 3.812-3 3.809-3 3.850-3 3.954-3 4.142-3 4.432-3 4.821-3 5.285-3 5.787-3
Table 5: tex2html_wrap_inline1984 effective collision strengths for tex2html_wrap_inline2168

 


next previous
Up: Atomic data from

Copyright by the European Southern Observatory (ESO)
web@ed-phys.fr