The source was observed with the VLA (Thompson et al. 1980) in the A
configuration on 1990 May 17 at 8.4 and 15GHz (resolution
0.30
and
0.17
respectively) for about 15 minutes.
Two IF channels each with a 50MHz bandwidth and separated by
50MHz were used at both frequencies.
The data were calibrated using the standard VLA calibrators and the source
imaged with the NRAO AIPS programs.
The VLA image of 1422+202 at 8.4GHz shows that the source structure
is mainly elongated north-south. It contains several blobs of emission
labelled from a to e in Fig. 1 (click here). A faint extended region of
emission (component f) is also seen off-axis near component e.
This last component and component d are not detected at 15GHz
(see Fig. 2 (click here)). Most of the emission from the remaining components is
resolved out. Component e shows a ridge of emission along the
major axis and the bright peak appears resolved in two components.
Component b, unresolved at 8.4GHz shows here an extension in
Position Angle (PA) 40
. The brightness distribution can be
fitted with a two Gaussian model. If the bright peak of emission in b
is instead fitted with a single circular Gaussian model and then subtracted,
the residual map shows 1-2mJy left south-west of the peak. So we believe
that the extension is real.
Figure 1: 8.4GHz VLA. The beam is 0.300.27
in PA
. The noise is 0.06mJy
. Contours
are at -0.2, 0.2, 0.4, 0.6, 0.8, 1, 2, 4, 8, 16, 32, 64, 128, 256mJy
. The peak flux density is 102.1mJy
.
Component b is believed to be the core
Figure 2: 15GHz VLA map. The beam is 0.170.15
in PA 50
. The noise is 0.1mJy
. Contours
are at -0.4, 0.4, 0.6, 0.8, 1, 2, 4, 8, 16, 32, 64mJy
.
The peak flux density is 34.0mJy
. A cross marks
the position of the optical counterpart
Previous observations of 1422+202 made with MERLIN at 408MHz and with
the VLA at 5GHz can be found in Mantovani et al. (1992).
The three VLA images of 1422+202 at 5, 8.4 and 15GHz were convolved with
the same circular Gaussian beam (FWHM 0.5). The spectral index
distributions were obtained for two ranges,
and
. The spectral index is
everywhere much steeper than 0.4 (
).
Some flattening of the slope is visible only for component b.
We can say more about the spectral shape of the emission in b taking
into account the MERLIN map at 408MHz. There the component b was not
detected, and we can put an upper limit of
5mJy to its emission.
From the VLA convolved maps at 5, 8.4 and 15Hz we have 34, 26 and 15
mJy peak respectively, suggesting that 1422+202 has a Giga-Hz-peaked
Spectrum core which peaks about
.
This is confirmed if we also plot the flux density of
15.1mJy we got at 1.6GHz from the VLBI map (see Table 1 (click here)).
Such a value fits with a curved spectral index peaking at
4GHz. The component b is believed to be the core of
1422+202.
The overall structure of the source is thus rather asymmetric, with a long
collimated wiggling jet pointing south, no evidence at the detection limit
of our maps of a counter-jet, a weak nearby hot spot to north (component
a) and a bright hot spot at the end of the jet on the opposite side
(component e). The jet major axis changes in PA several time along its
path. The core, for example shows an extension in PA , quite
different from the PA of the ridge of emission in component e
which is
. Thus we suggest that the
jet is the projected image of a helical precessing jet.
The VLBI observations were made at 1.6GHz on 1987 March 1 with the EVN recording with the MarkIIIA terminal in Mode B and standard setup. The source 1422+202 was tracked for about 11 hours together with the calibration source OQ208, observed for three scans, 13 min long each, regularly spaced over the experiment. The data recorded at each station were correlated at the MarkIII correlator of the Max-Planck-Institut für Radioastronomie.
The raw data output from the correlator, were read with the MK3IN-program
(Bååth & Mantovani 1991) and analysed with AIPS. Our aim was the
detection and the imaging of the two components (the core and the south hot
spot) separated by 8
detected during a VLBI
pilot experiment with the short baseline Effelsberg-Westerbork.
The wide field mapping technique described in Bååth (1991)
could not be used directly for finding fringes. This technique requires a
phase-cal signal in each independent IF-channel to allow the removal of
the phase differences between the IF-channels in the postprocessing
stage. Unfortunately, the phase-cal signal was not injected at all stations
so we had to follows a different strategy.
The fringes were searched with the task CALIB for each IF channel independently
on the calibrator source OQ208.
The solutions found for OQ208 were applied to 1422+202, which is 9.6
away. This technique is equivalent to using a phase-cal signal, and allowed us
to thereafter remove the single and multiband band delays on 1422+202.
The multiband delays were fitted after averaging each IF over the frequency
channels. In other words, the phase referencing technique, which
usually requires to observe switching between the calibrator and the target
source with a short duty cicle, was successfully applied even in this case
where the calibration source was observed only three times.
The source 1422+202 was then imaged without obtaining any further fringe solution. It showed up with an absolute position which agrees with the VLA position. This will be discussed further in Sect. 3.2. The image had a well defined compact component coinciding with the expected position of the core. We then proceeded by fitting for station based phase offsets in order to further focus the image.
The VLBI map is shown in Fig. 3 (click here).
The map was obtained by restoring the field with a coarse
beam of 0.150.15
. All the extended structure has been
resolved out.
Only two components were detected in the imaged
field, almost aligned north-south, separated by
8
. The main component lies in the area were
the core of the source is.
The second component is weaker and slightly extended. Its position
coincides with that of the south hot spot seen in the VLA maps.
Figure 3: 1.6GHz VLBI map. The beam is 0.150.15
.
The noise is 0.5mJy
. Contours
are at -1.5, 1.5, 3, 5, 7, 9, 11, 13, 15, 17, 20mJy
.
The peak flux density is 14.2mJy
. A cross marks
the position of the optical counterpart