next previous
Up: Effective collision strengths

2. The calculation

The R-matrix computer packages utilized in the present computations have been described in detail by Berrington et al. (1987). The twelve target eigenstates which are included in the wavefunction representation of the MgVI parent ion are 2s22ptex2html_wrap_inline1663Stex2html_wrap_inline1665, 2Dtex2html_wrap_inline1665, 2Ptex2html_wrap_inline1665; 2s2ptex2html_wrap_inline1683Ptex2html_wrap_inline1721, 2Dtex2html_wrap_inline1721, 2Stex2html_wrap_inline1721, 2Ptex2html_wrap_inline1721; 2ptex2html_wrap_inline1735Ptex2html_wrap_inline1665; 2s22p23stex2html_wrap_inline1743Ptex2html_wrap_inline1721, 2Ptex2html_wrap_inline1721, 2Dtex2html_wrap_inline1721 and 2Stex2html_wrap_inline1721. These target eigenstates are represented by configuration-interaction type wave-expansions constructed from seven orthogonal one-electron basis orbitals, consisting of four "spectroscopic" (1s, 2s, 2p, 3s) and three "pseudo" type orbitals (tex2html_wrap_inline1653, tex2html_wrap_inline1659, tex2html_wrap_inline1641), the latter being included to allow explicitly for additional correlation effects. The radial part of each of these orbitals may be expanded in the form:
eqnarray316
Since the R-matrix program requires all the target states to be represented in terms of a single-orbital basis, our choice of orbital parameters (tex2html_wrap_inline1629, tex2html_wrap_inline1631, tex2html_wrap_inline1633) were as follows. The 1s, 2s and 2p orbital parameters were taken directly from the analysis of Clementi & Roetti (1974). The parameters for the 3s spectroscopic orbital were obtained by optimizing on the energy of the 2s22p23stex2html_wrap_inline1775Ptex2html_wrap_inline1721 state using the configuration-interaction computer package CIV3 as described by Hibbert (1975). The configurations 2s2p4, 2s22p23s and 2s2p3[3P]tex2html_wrap_inline1653 were included in this optimization procedure. The parameters for the tex2html_wrap_inline1653 pseudo-orbital were similarly obtained by optimizing on the energy of the 2ptex2html_wrap_inline1735Ptex2html_wrap_inline1665 state using the configurations 2s22p3, 2p5 and 2p4[3P]tex2html_wrap_inline1653, while those for the tex2html_wrap_inline1659 pseudo-orbital were found by optimizing on the 2s2ptex2html_wrap_inline1695Ptex2html_wrap_inline1721 level with configurations 2s2p4, 2s22p2[3P]tex2html_wrap_inline1659 and 2s2p3[3P]tex2html_wrap_inline1653. Finally the parameters for the only n=4 pseudo-orbital, tex2html_wrap_inline1641, were obtained by optimizing on the energy of the 2s2ptex2html_wrap_inline1695Dtex2html_wrap_inline1721 state with configurations 2s2p4, 2p43s, 2ptex2html_wrap_inline1843 and 2s2p3[1D]tex2html_wrap_inline1653. The parameters adopted for all seven orbitals are presented in Table 1 (click here). Table 2 (click here) displays the configurations, formed from this set of basis orbitals, which are retained in the wavefunction expansion for both even and odd parity target states.

   

tex2html_wrap_inline1853tex2html_wrap_inline1855
2s22p3 2s22p2 [3s, tex2html_wrap_inline1659, tex2html_wrap_inline1641]
2s22ptex2html_wrap_inline1871 2s22p3stex2html_wrap_inline1653
2s22p [3s2, tex2html_wrap_inline1881, tex2html_wrap_inline1883, tex2html_wrap_inline1885]2s2p4
2s2p3 [3s, tex2html_wrap_inline1659, tex2html_wrap_inline1641] 2s2ptex2html_wrap_inline1895
2s22p3s [tex2html_wrap_inline1641, tex2html_wrap_inline1659] 2s2p2 [3s2, tex2html_wrap_inline1881, tex2html_wrap_inline1883, tex2html_wrap_inline1885]
2s2p23stex2html_wrap_inline1653 2s2p23s [tex2html_wrap_inline1659, tex2html_wrap_inline1641]
2s2p3s [tex2html_wrap_inline1881, tex2html_wrap_inline1883, tex2html_wrap_inline1885] 2s2p3stex2html_wrap_inline1871
2s2p3s2 [tex2html_wrap_inline1659, tex2html_wrap_inline1641] 2s2ptex2html_wrap_inline1937
2ptex2html_wrap_inline19392p4 [3s, tex2html_wrap_inline1659, tex2html_wrap_inline1641]
2p52p33stex2html_wrap_inline1653
2p33s22p23s2 [tex2html_wrap_inline1659, tex2html_wrap_inline1641]
2p33s [tex2html_wrap_inline1659, tex2html_wrap_inline1641] 2p23s [tex2html_wrap_inline1881, tex2html_wrap_inline1883, tex2html_wrap_inline1885]
2p3 [tex2html_wrap_inline1881, tex2html_wrap_inline1883, tex2html_wrap_inline1885]
2p23stex2html_wrap_inline1871
2p3s2 [tex2html_wrap_inline1881, tex2html_wrap_inline1883, tex2html_wrap_inline1885]

Table 2: Configurations included for even and odd parity target states. All configurations include 1s2

The twelve target eigenstates included in the present calculation correspond to 23 fine-structure levels, each of which is assigned an index number in Table 3 (click here). Also shown in this table are the evaluated target state energies in atomic units relative to the 2s22ptex2html_wrap_inline1663Stex2html_wrap_inline1665 ground state of MgVI. An examination of these energies can give a reasonable measure of the accuracy of the ion representation utilized in the present calculation. On comparing with the most recent experimental values of Kaufman & Martin (1991) we see that most of the theoretical thresholds differ by less than 1tex2html_wrap_inline2005 from the experimental values, the greatest disparity occuring for the 2s22ptex2html_wrap_inline1663Stex2html_wrap_inline1665 - 2s22ptex2html_wrap_inline1689Dtex2html_wrap_inline1665 separation with a difference of less than 6%. Excellent agreement is also evident between the present thresholds and those obtained by the International Opacity Project (Burke & Lennon, unpublished). Following the normal R-matrix procedures the present calculation has been carried out with the energies shifted to their experimental values. Also shown in Table 3 (click here) are the total number of configurations retained to describe each state.

A further indication of the reliability of the present wavefunction representation can be found by examining the close conformity between the length and velocity oscillator strength values for transitions between the target states. In Table 4 (click here) we present oscillator strengths, obtained using the configuration-interaction computer code CIV3 (Hibbert 1975), for optically allowed transitions among the lowest twelve LS states of MgVI, in both the length and velocity formulations. Transitions for which the oscillator strength is less than 10-5 are not included. Excellent agreement is evident between the present length and velocity values with differences better than 9tex2html_wrap_inline2005. There is at present a severe lack of other available oscillator strengths for MgVI. Hence, our comparison is limited to those obtained by the Opacity Project. Good agreement is, however, evident between their length values and the length values obtained by the present calculation. This would suggest that the present length values can be assigned an accuracy by using the difference between the present results and those from the Opacity Project. With a few exceptions, this would suggest an accuracy of better than 5tex2html_wrap_inline2005. We note that the results of Bhatia & Mason (1980) for the 2s22p3 - 2s2p4 transitions are always larger than both the present data and the Opacity Project values by typically 30%.

The theory describing the expansion of the MgVI ion plus electron system has been discussed in detail by Burke & Robb (1975). The R-matrix boundary was set at 5.6 a.u., twenty continuum orbitals were included for each channel angular momentum and the electron-impact energy range of interest lies between 0 and 50 Rydbergs. All incident partial waves with total angular momentum tex2html_wrap_inline2035, for both even and odd parities, and singlet, triplet and quintet multiplicities, were included in the wavefunction expansion. These seventy-eight partial waves were found to be sufficient to ensure convergence of the collision strengths for the optically forbidden transitions. Contributions from the partial waves with total angular momentum L>12 become much more important for the dipole allowed transitions and need to be taken into account. It has been conclusively shown by Ramsbottom et al. (1994, 1995, 1996a, 1997), when investigating electron-impact excitation of NIV, NeVII, SII and ArIV respectively, that it is possible to estimate quite accurately these additional contributions for allowed transitions by assuming the partial collision strengths form a geometric series with a geometric scaling factor equal to the ratio of two adjacent terms. Contributions from the high partial waves L>12 can be as much as 15-20% for some of the slowest converging transitions.

The R-matrix computer packages produce collision strengths for transitions between LS states only. However, for many astrophysical and plasma applications it is often the collision strengths among the fine-structure levels which are required. Transforming to a jj-coupling scheme can easily be achieved by utilizing the program developed by Saraph (1978). Finally a thermally averaged effective collision strength (tex2html_wrap_inline2045) may be derived from the collision strength (tex2html_wrap_inline2047) by
eqnarray519

where tex2html_wrap_inline1621 is the electron temperature in K, tex2html_wrap_inline2051 the energy of the final electron and k is Boltzmann's constant.

   

IndexJ LevelMg VIPresentExpt.tex2html_wrap_inline2063OpacityBAMtex2html_wrap_inline2065No.
State LS EnergyProjecttex2html_wrap_inline2067Configs.
13/22s22ptex2html_wrap_inline1663Stex2html_wrap_inline1665 0.00000.00000.00000.0000 31
23/22s22ptex2html_wrap_inline1689Dtex2html_wrap_inline1665 0.26680.25230.25920.2652 70
35/2
41/22s22ptex2html_wrap_inline1689Ptex2html_wrap_inline1665 0.39710.38270.39150.3762 86
53/2
61/22s2ptex2html_wrap_inline1683Ptex2html_wrap_inline1721 1.12591.13411.12191.1283 70
73/2
85/2
93/22s2ptex2html_wrap_inline1695Dtex2html_wrap_inline1721 1.56571.55721.55601.6029 97
105/2
111/22s2ptex2html_wrap_inline1695Stex2html_wrap_inline1721 1.84551.83081.83721.8680 47
121/22s2ptex2html_wrap_inline1695Ptex2html_wrap_inline1721 1.96011.94031.94952.0214 85
133/2
141/22ptex2html_wrap_inline1735Ptex2html_wrap_inline1665 2.97042.97412.9650 86
153/2
161/22s22p23stex2html_wrap_inline1743Ptex2html_wrap_inline1721 4.08654.08024.0985 70
173/2
185/2
191/22s22p23stex2html_wrap_inline1775Ptex2html_wrap_inline1721 4.15274.14484.1648 85
203/2
213/22s22p23stex2html_wrap_inline1775Dtex2html_wrap_inline1721 4.29844.27764.3031 97
225/2
231/22s22p23stex2html_wrap_inline1775Stex2html_wrap_inline1721 4.52544.48084.5164 47

Table 3: Target state energies (in a.u.) relative to the 2s22ptex2html_wrap_inline1663Stex2html_wrap_inline1665 ground state of MgVI. (a) Experimental Energies of Kaufman & Martin (1991), (b) Opacity Values (tex2html_wrap_inline2061), (c) Bhatia & Mason (1980)

   

tex2html_wrap_inline2141tex2html_wrap_inline2143 tex2html_wrap_inline2145tex2html_wrap_inline2147
-fLfVfLfV
2s22ptex2html_wrap_inline2159Stex2html_wrap_inline1665 - 2s2ptex2html_wrap_inline2163Ptex2html_wrap_inline17210.19670.21580.20080.21680.261
2s22ptex2html_wrap_inline2159Stex2html_wrap_inline1665 - 2s22p23stex2html_wrap_inline2177Ptex2html_wrap_inline1721 0.09850.09960.12550.1285
2s22ptex2html_wrap_inline2183Dtex2html_wrap_inline1665 - 2s2ptex2html_wrap_inline2187Dtex2html_wrap_inline1721 0.11680.12640.11800.12800.155
2s22ptex2html_wrap_inline2183Dtex2html_wrap_inline1665 - 2s2ptex2html_wrap_inline2187Ptex2html_wrap_inline1721 0.16790.18020.16800.18400.202
2s22ptex2html_wrap_inline2183Dtex2html_wrap_inline1665 - 2s22p23stex2html_wrap_inline2211Ptex2html_wrap_inline1721 0.04420.04580.04650.0466
2s22ptex2html_wrap_inline2183Dtex2html_wrap_inline1665 - 2s22p23stex2html_wrap_inline2211Dtex2html_wrap_inline1721 0.04810.04900.05820.0591
2s22ptex2html_wrap_inline2183Ptex2html_wrap_inline1665 - 2s2ptex2html_wrap_inline2187Dtex2html_wrap_inline1721 0.03480.03680.03470.03750.046
2s22ptex2html_wrap_inline2183Ptex2html_wrap_inline1665 - 2s2ptex2html_wrap_inline2187Stex2html_wrap_inline1721 0.07080.07770.07180.07750.092
2s22ptex2html_wrap_inline2183Ptex2html_wrap_inline1665 - 2s2ptex2html_wrap_inline2187Ptex2html_wrap_inline1721 0.09130.09870.08930.09750.113
2s22ptex2html_wrap_inline2183Ptex2html_wrap_inline1665 - 2s22p23stex2html_wrap_inline2211Ptex2html_wrap_inline1721 0.07050.07410.06350.0655
2s22ptex2html_wrap_inline2183Ptex2html_wrap_inline1665 - 2s22p23stex2html_wrap_inline2211Dtex2html_wrap_inline1721 0.03710.03820.03650.0378
2s22ptex2html_wrap_inline2183Ptex2html_wrap_inline1665 - 2s22p23stex2html_wrap_inline2211Stex2html_wrap_inline1721 0.01680.01690.02480.0247
2s2ptex2html_wrap_inline2187Dtex2html_wrap_inline1721 - 2ptex2html_wrap_inline2305Ptex2html_wrap_inline1665 0.10120.10730.10200.1120
2s2ptex2html_wrap_inline2187Stex2html_wrap_inline1721 - 2ptex2html_wrap_inline2305Ptex2html_wrap_inline1665 0.03800.04190.03730.0415
2s2ptex2html_wrap_inline2187Ptex2html_wrap_inline1721 - 2ptex2html_wrap_inline2305Ptex2html_wrap_inline1665 0.20250.21810.20670.2250

-
Table 4: Oscillator strengths for optically allowed LS transitions in MgVI (+) Bhatia & Mason (1980)


next previous
Up: Effective collision strengths

Copyright by the European Southern Observatory (ESO)
web@ed-phys.fr