next previous
Up: Oscillator strengths in

3. Results

In Tables 1 (click here), 2 (click here) and 3 (click here), we display the f-values obtained in the present work together with theoretical values reported by other authors, given that no experimental measurements have been found in the literature. In the figures we show the systematic trends that some of the studied oscillator strengths present for individual transitions along the isoelectronic sequence when they are plotted versus the inverse of Z.

For tex2html_wrap_inline1275 transition we have performed both RQDO and MCDF calculations. Inspection of Table 1 (click here) shows that our oscillator strengths compare generally well with the f-values calculated by Biémont (1986a, 1986b), who combined the self-consistent field (HXR) method of Cowan (1981), which explicitly accounts for configuration interaction and some relativistic effects for obtaining the wave functions with a semiempirical fitting procedure for obtaining the energy eigenvalues. Biémont reports f-values (1986a) for the first few ions of the sequence only. Our RQDO f-values take explicitly into account core-polarization effects. It should be born in mind that some of the levels involved in the transition can be subjected to perturbations by other levels, as pointed out by Biémont (1986a). These perturbations are explicitly accounted for in the MCDF calculations. In the RQDO procedure, the effect of perturbations is only implicitly included through the quantum defects extracted from experimental energies. Overall, the RQDO f-values agree reasonably well with the MCDF results and these by Biémont (1986a, 1986b), both expected to be correct. A source of discrepancy between the RQDO and HXR (Biémont 1986a) f-values is, quite possibly, the use of different energy data. Both the RQDO and MCDF results, as well as the HXR f-values, comply with the general feature which characterises an LS coupling scheme (Cowan 1981), in all ions comprised in Table 1 (click here), of reflecting that the strongest transitions are those corresponding to tex2html_wrap_inline1289, in the two groups of triplet-triplet transitions which correspond, respectively, to the first three and last three columns of the table.

 

Z ION M tex2html_wrap_inline1293 tex2html_wrap_inline1295 tex2html_wrap_inline1297 tex2html_wrap_inline1299 tex2html_wrap_inline1301 tex2html_wrap_inline1303
19 KVI a. 0.1352 0.0468 0.0337 0.0569 0.0360 0.1041
b. 0.1724 0.0581 0.0433 0.0706 0.0436 0.1280
c. 0.1413 0.0482 0.0349 0.0621 0.0372 0.1099
20 CaVII a. 0.1337 0.0467 0.0332 0.0565 0.0362 0.1031
b. 0.1709 0.0577 0.0430 0.0698 0.0433 0.1267
c. 0.1380 0.0482 0.0333 0.0607 0.0364 0.1074
21 ScVIII a. 0.1306 0.0460 0.0323 0.0554 0.0361 0.1009
b. 0.1695 0.0573 0.0427 0.0690 0.0431 0.1253
c. 0.1349 0.0460 0.0318 0.0593 0.0364 0.1026
22 TiIX a. 0.1271 0.0451 0.0312 0.0541 0.0361 0.0982
b. 0.1678 0.0568 0.0423 0.0680 0.0427 0.1238
c. 0.1288 0.0450 0.0304 0.0566 0.0364 0.0980
23 VX a. 0.1235 0.0443 0.0300 0.0528 0.0362 0.0952
b. 0.1706 - 0.0430 0.0690 0.0435 0.1257
24 CrXI a. 0.1202 0.0434 0.0289 0.0516 0.0375 0.0921
b. 0.1697 0.0576 0.0429 0.0685 0.0434 0.1248
25 MnXII a. 0.1172 0.0427 0.0279 0.0504 0.0372 0.0888
b. 0.1683 - 0.0426 0.0677 0.0431 0.1234
26 FeXIII a. 0.1144 0.0420 0.0269 0.0493 0.0380 0.0853
b. - 0.0581 - 0.0664 - 0.1212
27 CoXIV a. 0.1119 0.0414 0.0260 0.0483 0.0390 0.0816
b. 0.1512 - 0.0384 0.0660 0.0390 0.1207
28 NiXV a. 0.1097 0.0408 0.0252 0.0473 0.0402 0.0778
b. - - - 0.0642 - 0.1196
29 CuXVI a 0.1078 0.0403 0.0245 0.0465 0.0414 0.0738
b. 0.1607 0.0551 0.0410 0.0636 0.0415 0.1162
30 ZnXVII a 0.1060 0.0399 0.0239 0.0456 0.0427 0.0698
b. 0.1586 0.0546 0.0406 0.0620 0.0412 0.1135
31 GaXVIII a 0.1044 0.0395 0.0233 0.0449 0.0439 0.0658
b. 0.1514 0.0523 0.0389 0.0588 0.0395 0.1077
32 GeXIX a 0.1030 0.0392 0.0228 0.0442 0.0451 0.0619
b. 0.1496 0.0518 0.0385 0.0579 0.0392 0.1060
33 AsXX a 0.1016 0.0389 0.0223 0.0435 0.0462 0.0582
b. 0.1496 0.0519 0.0386 0.0577 0.0392 0.1056
34 SeXXI a 0.1004 0.0387 0.0219 0.0429 0.0472 0.0548
b. 0.1486 0.0517 0.0385 0.0571 0.0391 0.1046
35 BrXXII a 0.0993 0.0385 0.0216 0.0424 0.0481 0.0516
b. 0.1511 0.0526 0.0392 0.0581 0.0398 0.1063
36 KrXXIII a 0.0982 0.0383 0.0213 0.0419 0.0489 0.0487
b. 0.1477 0.0516 0.0384 0.0565 0.0390 0.1033
37 RbXXIV a 0.0972 0.0382 0.0211 0.0414 0.0496 0.0461
b. 0.1353 0.0476 0.0354 0.0509 0.0360 0.0933
38 SrXXV a 0.0962 0.0381 0.0208 0.0409 0.0503 0.0437
b. 0.1338 0.0472 0.0351 0.0502 0.0357 0.0918
Table 1: Oscillator strengths for the lines of the multiplet tex2html_wrap_inline1291. The first entry (a) corresponds to the values calculated by us with the MCDF code written by Dyall et al. (1989); the second entry (b) corresponds to our RQDO results including polarization effects, and the third entry (c) corresponds to the values obtained by Biémont (1986a) with the HXR method, as described in the text

 

 

Z ION M tex2html_wrap_inline1305 tex2html_wrap_inline1307 tex2html_wrap_inline1309 tex2html_wrap_inline1311 tex2html_wrap_inline1313 tex2html_wrap_inline1315
39 YXXVI a 0.0953 0.0380 0.0207 0.0405 0.0508 0.0416
b. 0.1388 0.0490 0.0365 0.0523 0.0370 0.0956
40 ZrXXVII a 0.0944 0.0380 0.0205 0.0400 0.0514 0.0397
b. 0.1473 0.0518 0.0387 0.0560 0.0391 0.1023
41 NbXXVIII a 0.0936 0.0380 0.0204 0.0396 0.0519 0.0380
b 0.1481 0.0521 0.0389 0.0563 0.0394 0.1027
42 MoXXIX a. 0.0928 0.0380 0.0203 0.0393 0.0524 0.0365
b 0.1478 0.0521 0.0389 0.0554 0.0393 0.1010
44 RuXXXI a. 0.0914 0.0382 0.0202 0.0386 0.0534 0.0339
b 0.1213 0.0436 0.0325 0.0435 0.0330 0.0795
45 RhXXXII a. 0.0907 0.0383 0.0201 0.0383 0.0538 0.0328
b. 0.1220 0.0439 0.0328 0.0435 0.0332 0.0794
46 PdXXXIII a. 0.0900 0.0384 0.0201 0.0380 0.0543 0.0318
b. 0.1239 0.0446 0.0333 0.0439 0.0337 0.0802
47 AgXXXIV a. 0.0894 0.0385 0.0201 0.0377 0.0547 0.0309
b. 0.1280 0.0458 0.0342 0.0450 0.0347 0.0821
48 CdXXXV a. 0.0887 0.0387 0.0202 0.0374 0.0552 0.0301
b. 0.1312 0.0471 0.0352 0.0463 0.0355 0.0842
49 InXXXVI a. 0.0882 0.0389 0.0202 0.0372 0.0557 0.0294
50 SnXXXVII a. 0.0876 0.0391 0.0202 0.0369 0.0562 0.0287
51 SbXXXVIII a. 0.0870 0.0393 0.0203 0.0367 0.0567 0.0281
52 TeXXXIX a 0.0865 0.0395 0.0204 0.0364 0.0572 0.0275
53 IXL a 0.0860 0.0398 0.0205 0.0362 0.0577 0.0270
54 XeXLI a 0.0855 0.0401 0.0206 0.0360 0.0583 0.0265
Table 1: continued

In Table 2 (click here), we compare our two sets of f-values for the tex2html_wrap_inline1319 transition with a few theoretical results, which seem to be the only data available in the literature. For the first four ions, it is possible to compare our oscillator strengths with data reported by Biémont, using the same HXR method as in the above transition (Biémont 1986a), and with the f-values obtained with the length and velocity forms of the dipole transition operator by Nahar & Pradham (1993) within the Opacity Project. Their method of calculation, the close coupling (CC) aproximation using the R-matrix method, explicitly accounts for configuration interaction. For these ions, our f-values appear to be in general good agreement with the other theoretical results, again expected to be correct. For the last several ions we have used the energies obtained in our MCDF calculations for extracting quantum defects to be used in RQDO procedure. This has lead to no breackage in the steadily decreasing trend of the RQDO f-values with increasing Z, which can be taken as a sign of consistency of the RQDO procedure. One possible feature that may explain the discrepancies between the RQDO oscillator strengths and those obtained by Biémont (1986a) (which are, in no case, greater than 8%) is his reported perturbations between the tex2html_wrap_inline1329 and tex2html_wrap_inline1331 configurations, which have a non-negligible influence on the tex2html_wrap_inline1333 transition probabilities. The mixing between the tex2html_wrap_inline1335 and tex2html_wrap_inline1337 terms of the tex2html_wrap_inline1339 configuration, as detected by Biémont (1986a) from his analysis of the energy data (Corliss & Sugar 1979a, b; Sugar & Corliss 1979, 1980) may also be responsible for the aforementioned discrepancies.

 

Z ION RQDOtex2html_wrap_inline1343 MCDFtex2html_wrap_inline1345 Other theoretical values
19 KVI 0.1348 0.1401 0.1384tex2html_wrap_inline1347
20 CaVII 0.1258 0.1357 0.1321tex2html_wrap_inline1349, tex2html_wrap_inline1351
21 ScVIII 0.1180 0.1309 0.1291tex2html_wrap_inline1353
22 TiIX 0.1113 0.1262 0.1205tex2html_wrap_inline1355
23 VX 0.1117 0.1217
24 CrXI 0.1068 0.1174
25 MnXII - 0.1133
26 FeXIII 0.0976 0.1094
27 CoXIV 0.0937 0.1057
28 NiXV 0.0911 0.1021
29 CuXVI 0.0860 0.0986
30 ZnXVII 0.0803 0.0952
31 GaXVIII 0.0720 0.0919
32 GeXIX 0.0697 0.0888
33 AsXX 0.0691 0.0858
34 SeXXI 0.0676 0.0830
35 BrXXII 0.0697 0.0804
36 KrXXIII 0.0660 0.0781
37 RbXXIV 0.0523 0.0760
38 SrXXV 0.0478 0.0742
39 YXXVI 0.0436 0.0725
40 ZrXXVII 0.0399 0.0711
41 NbXXVIII 0.0366 0.0698
42 MoXXIX 0.0335 0.0688
44 RuXXXI 0.0288 0.0670
45 RhXXXII 0.0267 0.0664
46 PdXXXIII 0.0249 0.0659
47 AgXXXIV 0.0234 0.0654
48 CdXXXV 0.0220 0.0651
49 InXXXVI 0.0232 0.0648
50 SnXXXVII 0.0179 0.0647
51 SbXXXVIII 0.0190 0.0646
52 TeXXXIX 0.0182 0.0645
53 IXL 0.0175 0.0646
54 XeXLI 0.0165 0.0647
Table 2: Oscillator strengths for the transition tex2html_wrap_inline1341

a) RQDO with polarization, this work.
b) MCDF, this work.
c) HXR (Biémont 1986a).
d) O.P., length and velocity forms, respectively (Nahar & Pradhan 1993).  

  figure425
Figure 1: Oscillator strengths versus the reciprocal of the nuclear charge for the tex2html_wrap_inline1357 transition in the silicon isoelectronic sequence. *: RQDO, this work. tex2html_wrap_inline1359: MCDF, Huang (1985). tex2html_wrap_inline1361: HXR, Biémont (1986a, b)

  figure431
Figure 2: Systematic trends of the oscillator strength of the tex2html_wrap_inline1363 transition along the silicon isoelectronic sequence. *: RQDO, this work. tex2html_wrap_inline1365: MCDF, Huang (1985). tex2html_wrap_inline1367: HXR, Biémont (1986a, b)

In Table 3 (click here) we include only our RQDO f-values given that an extense MCDF calculation, using Declaux's code (1975), has been reported by Huang (1985). For the tex2html_wrap_inline1371 transition, our RQDO results, which explicitly account for core polarization effects, are close in magnitude to the HXR f-values reported by Biémont (1986a, b), by Bromage (1980) and Bromage et al. (1978), as well as other theoretical values, which are claimed by their authors to be correct. However, the MCDF f-values from Huang (1985) show very large discrepancies with the rest of the theoretical results displayed in Table 3 (click here). These discrepancies increase with atomic number, being the MCDF oscillator strengths too small. When comparing these MCDF data with those of our own MCDF calculations (not shown in the Table 3 (click here)), the latter present the same feature roughly the same characteristics as Huang's (1985). This leads us to suggest that the MCDF procedure is not adequate for this particular transition, possibly due to cancellation effects in the transition integral. Biémont (1986b) also attributes the large discrepancies observed between Huang's f-values and his HXR f-values to an incorrect assignment of the tex2html_wrap_inline1381 energy levels by Huang (1985). We once more explain the much less important discrepancies observed between the RQDO oscillator strengths and the HXR ones (Biémont 1986a, b) to their explicit inclusion of configuration mixing. This seems to be particularly important between tex2html_wrap_inline1383 level corresponding to the final tex2html_wrap_inline1385 state, and the tex2html_wrap_inline1387 level and more so as Z increases (Biémont 1986a), as in the previous transition.

For the singlet-singlet tex2html_wrap_inline1391 transition, we have calculated oscillator strengths using our semiempirical procedure RQDO only. In Table 3 (click here) our f-values are compared with other theoretical results. The most extense calculation is the MCDF one performed by Huang (1985). This author has accounted for electron correlation by including all relativistic configurations in the n=3 complex.

 

tex2html_wrap_inline1403tex2html_wrap_inline1405

Z

ION RQDOtex2html_wrap_inline1407 MCDFtex2html_wrap_inline1409 others RQDOtex2html_wrap_inline1411 MCDFtex2html_wrap_inline1413 others
19 KVI 0.4467 0.0762 0.6472tex2html_wrap_inline1415 1.0901 1.061 1.0024tex2html_wrap_inline1417
20 CaVII 0.3977 0.0826 0.5024tex2html_wrap_inline1419 0.9873 0.9549 0.8934tex2html_wrap_inline1421
0.678/0.674tex2html_wrap_inline1423
21 ScVIII 0.3850 0.0862 0.3991tex2html_wrap_inline1425 0.8956 0.8640 0.8148tex2html_wrap_inline1427
22 TiIX 0.3679 0.0876 0.3319tex2html_wrap_inline1429 0.8160 0.7864 0.7431tex2html_wrap_inline1431
23 VX 0.3480 0.0874 0.2825tex2html_wrap_inline1433 0.7385 0.7197 0.6935tex2html_wrap_inline1435
0.266tex2html_wrap_inline1437 0.744tex2html_wrap_inline1439
24 CrXI 0.3067 0.0861 0.2891tex2html_wrap_inline1441 0.6809 0.6617 0.6325tex2html_wrap_inline1443
25 MnXII 0.2948 0.0839 0.2825tex2html_wrap_inline1445 0.6297 0.6106 0.5902tex2html_wrap_inline1447
26 FeXIII 0.2935 0.0810 0.2698tex2html_wrap_inline1449 0.5862 0.5652 0.5383tex2html_wrap_inline1451
0.268tex2html_wrap_inline1453 0.582tex2html_wrap_inline1455
0.2761tex2html_wrap_inline1457 0.5768tex2html_wrap_inline1459
27 CoXIV 0.3008 0.0775 0.2576tex2html_wrap_inline1461 0.5474 0.5244 0.5024tex2html_wrap_inline1463
28 NiXV 0.2692 0.0735 0.2350tex2html_wrap_inline1465 0.5143 0.4878 0.4688tex2html_wrap_inline1467
0.20tex2html_wrap_inline1469 0.51tex2html_wrap_inline1471
29 CuXVI 0.2375 0.0691 0.4840 0.4547
30 ZnXVII 0.2781 0.0644 0.4578 0.4251
31 GaXVIII0.2603 0.0593 0.4398 0.3988
32 GeXIX 0.2398 0.0540 0.4194 0.3756
33 AsXX 0.2189 0.0462 0.3998 0.3555
34 SeXXI 0.1991 0.0419 0.3831 0.3382
35 BrXXII 0.1775 0.0348 0.3654 0.3234
36 KrXXIII0.1635 0.0267 0.3532 0.3109
37 RbXXIV 0.1511 0.0175 0.3505 0.3002
38 SrXXV 0.1362 0.0083 0.3419 0.2912
39 YXXVI 0.1224 0.0021 0.3340 0.2836
40 ZrXXVII0.1087 6.05(-5) 0.3271 0.2770
41 NbXXVIII0.0956 0.0004 0.3208 0.2713
42 MoXXIX 0.0834 0.0016 0.3151 0.2662
44 RuXXXI 0.0512 0.0041 0.3115 0.2576
45 RhXXXII0.0428 0.0048 0.3070 0.2537
46 PdXXXIII0.0349 0.0050 0.3029 0.2501
47 AgXXXIV0.0274 0.0048 0.2993 0.2466
48 CdXXXV 0.0209 0.0041 0.2960 0.2433
49 InXXXVI0.0148 0.0031 0.2931 0.2401
50 SnXXXVII0.0095 0.0020 0.2905 0.2370
51 SbXXXVIII0.0054 0.0011 0.2882 0.2339
52 TeXXXIX0.0023 4.44(-4) 0.2863 0.2309
53 IXL 0.0004 1.15(-4) 0.2846 0.2280
54 XeXLI 0.0000 2.24(-6) 0.2832 0.2252
Table 3: Oscillator strengths for the transitions involving the metaestable level tex2html_wrap_inline1397, tex2html_wrap_inline1399 and tex2html_wrap_inline1401

a) RQDO, this work; b) MCDF (Huang 1985); c) HXR (Biémont 1986a); d) O.P., tex2html_wrap_inline1473 (Nahar & Pradhan 1993); e) HXR (Biémont 1986b); f) HXR (Bromage 1980); g) HXR (Bromage et al. 1978); h) Flower & Nussbaumer (1974); i) Fuhr et al. (1981).  

Our semiempirical f-values are in better agreement than in previous transitions with the values obtained with the quite much more complex procedures, even with the results obtained using the ample Multiconfigurational Dirac-Fock method, possibly due to the less delicate level perturbation situation here.

Finally, in Figs. 1 (click here) and 2 (click here) we compare the oscillator strengths corresponding to the last two transitions, respectively, in graph form. For that purpose, we have plotted the f-value for the entire group of isoelectronic ions against the reciprocal of the atomic number Z. These figures also serve the purpose of reflecting systematic trends in the individual f-values along the isoelectronic sequence, which have long been considered (Wiese & Weiss 1968) as a qualitative proof of correctness and allows, when they are regular enough, the interpolation or extrapolation of non-calculated data.


next previous
Up: Oscillator strengths in

Copyright by the European Southern Observatory (ESO)
web@ed-phys.fr