The pressure in the bridges of radio lobes of FRII-type sources are
higher than that of their environment (e.g. Subrahmanyan &
Saripalli 1993; Subrahmanyan et al. 1996). Radio source evolution
models predict that the pressure in the lobes decreases with increasing
source size (e.g. Kaiser & Alexander 1997), so that the lobes of large radio
sources should be closer to pressure equilibrium with their
environment. Since GRGs are the largest radio sources known, they are
best suited to constrain the pressure in the ambient medium. In this
section we investigate the energy densities in the lobe of the
FRII-type GRGs in our sample and we relate this to the properties of
their environment, the IGM.
![]() References: (1) 1.4-GHz WSRT data (Paper I); (2) Jägers 1986; (3) Vigotti et al. 1989; (4) Lara et al. (in preparation); (5) Mack et al. 1997; (6) FIRST survey; (7) 1.4-GHz WSRT data (unpublished); (8) Parma et al. 1996; (9) NVSS survey; (10) Röttgering et al. 1996; (11) Riley & Warner 1990. |
We have calculated the equipartition energy densities and magnetic
field strengths in the lobes of the FRII-type GRGs in our sample. We
have used a method similar to that outlined by Miley (1980). To
determine the luminosity of each lobe, we have used the integrated
325-MHz flux densities (see Table 3).
The spectral index of each lobe has been calculated between 325 MHz
and 10.5 GHz. In case of significant steepening of the radio spectrum
at frequencies below
10.5 GHz this value will be too low, but the influence of this on the
result is only marginal (see Miley 1980).
![]() |
Figure 9: Profiles of the equipartition energy density distribution along the major axes of several of the radio sources. The zeropoint is the position of the radio core. The numbers along the upper axis denote the distance from the core in units of kpc. Negative values are on that side of the source which is mentioned first in column two of Table 7 |
The volumes of the radio lobes have been estimated assuming a
cylindrical morphology. The width has been taken as the deconvolved
average full width of the lobe, measured between the 3contours on a radio contour map. The length of the lobe, whenever a
clear gap exists between the core and the tail of the radio lobe (see, e.g.,
B0648+733, B2147+816), has been taken as the distance between the
innermost and outermost edge of the lobe at 325 MHz. The radio axes
have been assumed to be in the plane of the sky; although this is
certainly not the case for the majority of sources, the correction
factors are not large compared to the uncertainties introduced by
assuming cylindrical morphologies.
These used lobe dimensions are
quoted in Table 7. Further assumptions
are a filling factor of the radiating particles of unity and an equal
distribution of energy between electrons/positrons and heavy
particles such as protons. The low and high-frequency cut-offs in the
radio spectra have been set at 10 MHz and 100 GHz, respectively.
In Table 7 we present the equipartition
magnetic field strengths and energy densities of the lobes of the
FRII-type sources in our sample. We find that the magnetic field
strengths are low, typically a few G. Consequently,
also the energy densities, which are directly derived from the
magnetic field strengths (
), are low.
This is as expected since the GRGs are extremely large and not exceptionally powerful.
The equipartition energy densities in Table 7
are the lobe volume averaged energy densities. Within the lobes,
however, large variations may be present. To investigate this, we have made
profiles of the equipartition energy density for the FRII-type sources
above
in size. We have used the same method as we have used
to find the spectral index profiles in Sect. 5.1, i.e.
by superposing on the source an array of boxes of width half the FWHM
beam-size. In each box we have determined the average deconvolved
width of the lobe by measuring the distance between the
outer
contours, and we have integrated the 325/354-MHz flux density. The
spectral index of each box was calculated between 325/354 MHz
and 10.5 GHz. In the case of B0813+758 and B1209+745 we used
the 1.4-GHz NVSS map as the high-frequency map in order to employ
the higher resolution available. In all cases the radio maps
were first convolved to the lowest resolution map
used. Only in boxes where the integrated flux density at both frequencies
exceeded
,
the spectral index was calculated and the
equipartition energy density determined. In case of the sources
B0050+402 and B0648+733, the deconvolved lobe widths were below
zero, and we have therefore omitted these sources from further analysis.
The reason for this is not entirely clear to us.
The profiles of the equipartition energy density for the remaining
sources are presented in
Fig. 9. In some cases, such as
B0813+758, B0945+734 and B1312+698, we find the largest
values of
at
the heads of the lobes. In some other cases, such as B1209+745 and
B2043+749, we clearly detect the influence of the radio core. When we
compare the lobe averaged energy densities as presented in Table 7 with
the average value of the profiles in the plots,
we find that the differences, as
expected, are relatively small. In only a few cases we find
discrepancies, exceeding a
factor of two, and these are mostly due to the difference in the
assumed geometry of the lobes.
In a relativistic plasma, such as which constitutes the radio lobes,
the pressure, p, is directly related to the
energy density by
.
Therefore, the plots in
Fig. 9 also show the behaviour of the lobe
pressure as a function of position along the radio axis. Since we
have used a relatively low frequency for the flux density measurements
and we have measured the spectral index for each plotted point
separately, the results should not be highly sensitive to the increased effect
of spectral ageing of the electrons towards the radio core.
If the host galaxy is at the center of a cluster, or if it has an extensive gaseous halo, hydrostatic pressure equilibrium requires a radial decrease of the pressure. The gradient should be strongest at small radii, around the core radius of the gas distribution. If the pressures in the bridges of the lobes are close to pressure equilibrium with their surrounding, it is expected that this gradient should be reflected in the lobe pressures at small radii.
We do not find such a behaviour in the majority of our sources. In the few cases where the energy density appears to increase near the position of the host galaxy this can be attributed to the presence of a radio core and/or radio jets (e.g. B1209+745 and B2043+749). Only in B1543+845 and in the eastern lobe of B0813+758 we observe a small increase in the pressure at small radii which cannot be related to a strong radio core or a jet (L. Lara, priv. comm.), and which might thus indicate the presence of a pressure gradient in the environment. In most sources the energy density actually increases with increasing distance from the host galaxy. This indicates that the lobes must be overpressured with respect to their environment, even at small radii, and that there are pressure gradients in these lobes: The heads of the lobes have much higher pressures than the bridges.
From the ages, advance velocities and energy densities of the lobes we
can estimate the density of the environment. We assume that the
propagation of the head of the lobe is governed by a balance between
the thrust of the jet and the ram-presssure exerted by the
environment. In this case, the external density,
,
is given by
,
where
is the thrust of
the jet,
is the area of the bowshock and
is the advance
velocity of the head of the lobe. The thrust
is given by
,
with
the velocity of the material in the
jet, which we assume to be c, the velocity of light, and
,
which is the amount of energy delivered by the jet per unit time, or
the jet power. We can estimate the jet power by dividing the total
energy contents of the lobes of the radio source by the age of the
source. An important factor in this is the efficiency with which jet
energy is converted to radiation. A conservative choice is given by
Rawlings & Saunders (1991): Half of the energy goes into the
expansion of the lobe and the other half into radiation. Blundell
et al. (1999), on the basis of radio source modelling, estimate values
between 0.3 and 0.6 which agrees with a value of 0.5. We therefore
assume that the jet power is twice as high as the energy content
of a radio lobe, divided by its age. The energy content can be
estimated by multiplying the equipartition energy density with the
volume of the lobe.
Since
(where
is the diameter of the impact area),
plays an important role in
determining the ambient density. We cannot constrain it directly from
our observations, but a good estimate is given by the size of the
observable hotspot (e.g. Hardcastle et al. 1998). High-resolution
observations of the hotspots in B1312+698 can be found in Saunders
et al. (1987). These show that the size of the hotspots is less than
15 kpc. Arcsecond resolution observations of the source B2043+748
give similar constraints (Riley et al. 1988). Further, Hardcastle et
al. (1998) find a positive correlation between the linear size of a
source and the diameter of the hotspots in a sample of powerful 3CR
FRII-type radio sources at z<0.3. This is confirmed for a larger
sample of sources by Jeyakumar & Saikia (2000). Based on these
results, we have used a diameter of 5 kpc to calculate the ambient
densities of the lobes. For the age of a source, we have used
the average age of both its lobes, and of both, CI and JP, ageing
models. We have used the ages calculated with an internal magnetic
field strength of
,
since these are upper limits to
the age and thus provide lower limits to
and
.
Using
this average age we have calculated the average jet power of the two
lobes, which we assume to be equal on both sides of the source.
The resulting densities
are presented in Table 8.
We find particle densities
between
and
cm-3. They
have been calculated using a mean atomic mass of 1.4 amu in the
environment of the radio sources. The densities are in good agreement
with the results of Mack et al. (1998).
If we assume a temperature in the IGM of a few 106 K (e.g. Cen &
Ostriker 1999), the thermal pressure in the environment would be
dyn cm-2 for a particle density of
cm-3. Such low pressures support the
indications in Sect. 6.2 that the radio
lobes must be overpressured with respect to the IGM.
![]() |
Copyright The European Southern Observatory (ESO)