The antenna test range of the Integration and Tests Laboratory (a satellite dedicated facility) at the National Institute for Space Research - INPE - was used over a period of 3 weeks in order to obtain full beam patterns of the GEM backfire helical feed antennas at 408MHz and 1465MHz. For the measurements, a vertically polarized transmitter was located on a tower 25 m above the ground and 80 m in front of an anecoic chamber. The antenna under test sat on a plate attached to the head of the fiber glass support arm of a platform with 3 degrees of freedom (slide: horizontal motion along the axis between transmitting and receiving antennas; roll: rotation of the head support plate about the slide axis; azimuth: horizontal scanning motion).
During the measurements, the upper section of the support arm was surrounded with Eccosorb in order to avoid undesired strayed signal from the obstruction behind the head support plate. Furthermore, since a backfire helix radiates in the direction of its ground plane, PVC extensions were customized to position the helix upside down on the head plate and to direct the feed cable toward its connector at the ground plane. Preliminary tests were conducted at different positions along the slide axis to match the phase center of the feed antenna with the rotation axis of the support arm. The backlobe structures of the feeds were also obtained by adjusting their ground planes onto the PVC extensions attached to the head plate.
The beam patterns were obtained by measuring the power response of the
antennas with polar angle
while the platform rotated through
in azimuth. The measurements were taken at
intervals at 408MHz
and every
at 1465MHz. The full spatial response was generated by repeating
the azimuth scans for a sequence of equally-spaced roll angles. Although a
range in roll angle would have sufficed to cover all space directions,
the helical antenna is capable of shifting the phase of the received
signal as it turns around its main beam axis (Kraus 1988).
Roll angle test measurements with the 408MHz helix were consistent with this
prediction and, in this case, the entire
range in roll angle was
covered at
steps. No significant phase shifting was noticed with
the 1465MHz helix, for which
roll angle steps were used.
As required by a polar angle resolution of
in the diffraction model we
apply in the next section, the measured responses were regridded and interpolated
to accomodate a
spatial resolution. Diagrams of the resulting power
patterns
down to the 20-dB level are displayed in Figs. 7a,b.
Their mean response averaged over
produces the pattern profiles
shown in Fig. 8. The radiometric characterization
of these backfire helices is further illustrated in Fig. 9, showing the
antenna solid angle as a function of the polar angle
,
and Table 1 gives
the directivity, D, main beam efficiency,
,
and the beam
solid angle fraction,
,
intercepted by the co-rotating ground
shield (halo) of the GEM parabolic reflector. The 10-dB points attain 93.8%
and 62.5% of the total dish illumination at 408MHz and 1465MHz, respectively.
![]() |
Figure 9: Antenna solid angle growth with polar angle for the beam patterns in Fig. 8 and for the full 3-d measured response of the backfire feeds. The vertical lines are as in Fig. 8 |
![]() |
![]() |
||||
408MHz | 1465MHz | 408MHz | 1465MHz | ||
D | 5.32 | 8.19 | 6.92 | 13.56 | |
![]() |
0.87 | 0.71 | 0.87 | 0.71 | |
![]() |
5.90 | 9.36 | 5.89 | 9.32 |
Experimental reports on monofilar axial-mode helical antennas have seldom focused the backfire type. End-fire helices of equivalent design characteristics, for example, do not depend critically on frequency over the range studied here (see Paper I); whereas Table 1 clearly favours a frequency dependence for the backfire mode. A few authors have also attempted to describe the radiometric properties of the backfire helix from analytical, numerical and experimental points of view (Sexson 1965; Johnson & Cotton 1984; Nakano et al. 1988). No definite consensus has yet emerged from these studies, since the mechanical design of the helices under investigation was substantially different for each author. Our backfire feeds, which follow the design considerations of typical Kraus coils (Kraus 1988), show a substantial narrowing of the beamwidth with increasing frequency which disagrees with the predictions of earlier studies (Sexson 1965; Nakano et al. 1988).
Copyright The European Southern Observatory (ESO)