The radio pulsar catalog (Taylor et al. 1993; Taylor et al. 1995) contains 84 entries in the part of the sky that was covered by the WENSS area. The typical positional uncertainty for a pulsar with a flux density greater than 10 mJy is 0.1 or less. In most cases the uncertainty in the pulsar position is negligible compared to the positional uncertainty of WENSS sources.
The pulsar proper motions are neglected, since for each pulsar the change in position between the epoch of discovery and the epoch of the WENSS is less than 0.5 in right ascension and less than 0.8 in declination for all these pulsars. This is much smaller than the uncertainties in the WENSS positions.
Seven pulsars in the WENSS area have large positional errors of
about 4.
The probability that a WENSS source is located by
chance within a circle of three times this positional error is more
than 90 percent, if it assumed that the WENSS sources are uniformly
distributed over the sky. Therefore, I have excluded these 7 pulsars
(PSRs J0417+35, B1639+36B, J1758+30, J1900+30, J1931+30, J2002+30 and
J2304+60) from further analysis. PSR B2000+40 was also excluded,
since it is located in the Cygnus A region, where no WENSS map could
be made.
I have taken the J2000 positions of the remaining 76 pulsars and
compared them with the positions of the sources in the WENSS catalog.
Twentyfive pulsars have a WENSS source located within three times
their combined positional uncertainty ,
with
(1) 
(2) 
In Fig. 1 it can be seen that the pulsars are located in areas with different values for the WENSS source density. The probability of a change coincidence can be approximated by a probability calculation that assumes a uniform distribution of the WENSS sources. In that case, the probability that an individual correlation is just by chance is 0.0012. The binomial probability, that one out of 76 trials gives a chance correlation is 0.083. The probability that two correlations occur by chance is 0.004.
Figure 2 displays the distribution of positional
differences between a pulsar and its nearest WENSS source in units of
their combined positional uncertainty .
There is a clear gap
between the correlated pairs (difference less than 3)
and the
noncorrelated ones. The distribution of the positional difference
()
for the related pairs is
There are two objects with positional differences between 3 and 10
.
These are in confused regions and will be discussed in
Sect. 4.

Table 2 lists the observed flux densities of the correlated WENSS sources and their uncertainties. The flux densities can be compared with known pulsar flux densities, but these are usually measured at frequencies of 400 MHz and higher. By assuming a power law with constant spectral index, these flux density data can be extrapolated. I have used flux density data from Lorimer et al. (1995), hereafter LYLG. These flux densities are averaged over many observations spread over years and their uncertainties include variations due to scintillation. LYLG provide data for 24 of the 25 pulsars in Table 1. Flux densities for PSR J0218+4232 are taken from its discovery paper (Navarro et al. 1995).
Pulsar flux densities usually obey a power law with a negative
exponent (
with
)
in the
frequency range from 325 to 1400 MHz. I have fitted the logarithms of the
flux densities with a straight line. These lines are plotted in Fig. 3.
From this fit a flux density at 325 MHz is estimated. This
estimate is plotted against the flux density of the WENSS counterpart in
Fig. 4. It is known that some pulsars have a low
frequency turnover, usually located around 100 MHz
(Malofeev et al. 1994). However, some pulsars exhibit a turnover at a higher
frequency: PSR B0329+54 around 300 MHz (Lyne & Rickett 1968) and PSR B2021+51
around 400 MHz. The spectrum of PSR B2319+60 is flat between 200 and
600 MHz (Malofeev et al. 1994). PSRs B1946+35 and B2154+40 also have a
turnover, but it is not clear whether this located between 325 and
400 MHz (Malofeev et al. 1994). In these cases the assumption of a constant power
law is not correct and this results in an overestimated flux density at
325 MHz. Navarro et al. (1995) discovered that the flux density of PSR
J0218+4232 has a nonpulsed component. They find that the continuum
flux density at
325 MHz varies between 100 and 200 mJy. I used this flux density
estimate for a comparison with the WENSS flux density. An estimate from the
pulsed flux density was not derived.

Copyright The European Southern Observatory (ESO)