next previous
Up: Resolved double-lined spectroscopic binaries:


  
2 Resolved spectroscopic binaries


   
Table 1: List of resolved double-lined spectroscopic binaries
HIP Name HD mv1 Sp1 mv2 Sp2 Type Ref
      (mag)   (mag)      
677 $\alpha$ And 358 2.22 B8IV 4.21   SB2 1, 30, 32, 33
2941 ADS 520 3443 5.57 G8V   G8V LWSB 2, 26, 31, 34
4463 $\eta$ And 5516 4.42 G8III-IV     SB2 3, 35
7580 Kui 7 10009 6.54 F5V 7.77   SB2 4, 36
8903 $\beta$ Ari 11636 2.64 A5V     SB2 5, 64, 65, 67
10064 $\beta$ Tri 13161 3.0 A5III     SB2 6, 45, 62, 63
10644 $\delta$ Tri 13974 4.85 G0V     LWSB 1, 45, 27
10952 $\Sigma$ 248   8.5 K0V 10.5 K0V SB2 7, 8, 34, 61
12390 $\epsilon$ Cet 16620 4.84 F5V   F6V LWSB 1, 27, 37
12623 12 Per 16739 4.91 F9V     SB2 1, 26, 37, 59, 60
14328 $\gamma$ Per 18925 3.25 G8III 4.49 A3V SB2 9, 10
20087 51 Tau 27176 5.64 A8V   G0V LWSB 11, 37
20661 Fin 342 27991 6.44 F7V     SB2 12, 37
24608 $\alpha$ Aur 34029 0.08 G8III   G0III SB2 13, 14, 57, 58
28360 $\beta$ Aur 40183 1.96 A2IV     SB2 1, 45, 56
38382 9 Pup 64096 5.72 G2V 6.17   SB2 1, 2, 27, 37
45170 Fin 347Aa 79096 6.49 G8V   G8V SB2 15, 37, 49
46404 HR 3750 81809 5.80 G2V 6.60 G9V LWSB 2, 27, 34, 37
57565 93 Leo 102509 4.60 G8III   A7V SB2 16, 45
65378 $\zeta^1$ UMa 116656 2.27 A1VpSrSi     SB2 1, 54, 55
71683/1 $\alpha$ Cen 128620/1 -0.01 G2V 1.33 K1V SB2 1
73182 Gl 570B 131976 8.33 M1.5V 9.94 M3V LWSB 17, 43
75312 $\eta$ CrB A 137107/8 5.62 G2V 5.96 G2V LWSB 2, 26, 34
85667 $\Sigma$ 2173 158614 6.02 G9IV-V 5.93 G9IV-V SB2 1, 18, 26, 34, 37
87895 HR 6697 163840 6.39 G0-2V 9.19 K2-5V SB2 19
88601 70 Oph 165341 4.2 K0V 6.0 K5V SB2 20, 34, 51, 52, 53
89937 $\chi$ Dra 170153 3.57 F7V     SB2 1, 26, 37, 66
91636 $\Sigma$ 2367 172865 7.47 G5IV 7.97 G5IV SB2 21, 22, 34, 50
95995 Gl 762.1 184467 6.59 K1V     SB2 2, 37, 48, 49
96683 $\phi$ Cyg 185734 5.31 K0III 5.6 K0III SB2 23, 24, 25, 47
98416 Gl 773.3 189340 5.88 F8V     LWSB 1, 37, 46
99376 ADS 13461 191854 8.058 G4V 8.598 G8V LWSB 26, 34
99473 $\theta$ Aql 191692 3.23 B9.5III     SB2 1, 44, 45
103655 Gl 815AB   10.29 dM3e 12.19   SB3 2, 34, 43
104858 $\delta$ Equ 202275 5.25 F8V 5.25   SB2 2, 27, 37
104987 $\alpha$ Equ 202447/8 3.92 G2III   A5V SB2 28, 41, 42
108917 $\xi$ Cep A 209790 4.29 A3m     SB2 1, 37, 40
111170 Gl 862.1 213429 6.14 F7V     LWSB 1, 37, 39
111528 ADS 16098 214222 8.4 G0IV     SB2 4, 34, 37, 49
114576 ADS 16591 219018 8.4 G2V 8.6 G4V SB2 29, 34, 38
Ref. 1: Hoffleit & Jaschek 1982; 2: Gliese 1969; 3: Hummel et al. 1993; 4: Tokovinin 1993; 5: Tomkin & Tran 1987; 6: Cowley et al. 1969; 7: Carney et al. 1994; 8: Torres 1995; 9: Bahng 1958; 10: Griffin et al. 1994; 11: Torres et al. 1997a; 12: Torres et al. 1997b; 13: Rufener 1976; 14: Bagnuolo & Sowell 1989; 15: Mason et al. 1996; 16: Batten et al. 1983; 17: Mariotti et al. 1990; 18: Batten et al. 1991; 19: McAlister et al. 1995; 20: Heintz 1988; 21: Christy & Walker 1969; 22: Stephenson & Sanwal 1969; 23: Fernie 1969; 24: Fekel 1992; 25: Armstrong et al. 1992; 26: Duquennoy et al. 1991; 27: Duquennoy & Mayor 1988a; 28: Pike 1978; 29: Dommanget & Nys 1982; 30: Pan et al. 1992; 31: Roman 1952; 32: Tomkin et al. 1995; 33: Aikman 1976; 34: Worley & Douglass 1996; 35: Gordon 1946; 36: Hartkopf et al. 1996; 37: Hartkopf et al. 1997; 38: Duquennoy 1987; 39: Duquennoy et al. 1988; 40: Vickers & Scarfe 1976; 41: Rosvick & Scarfe 1991; 42: Armstrong et al. 1992; 43: Duquennoy & Mayor 1988b; 44: Cesco & Struve 1946; 45: Hummel et al. 1995; 46: Duquennoy & Mayor 1991; 47: Rach & Herbig 1961; 48: McClure 1983; 49: Mayor & Udry (Priv. Comm.); 50: Batten et al. 1982; 51: Berman 1932; 52: Batten et al. 1984; 53: Batten & Fletcher 1991; 54: Fehrenbach & Prevot 1961; 55: Hummel et al. 1998; 56: Smith 1948; 57: Hummel et al. 1994; 58: Barlow et al. 1993; 59: Colacevich 1941; 60: Barlow et al. 1998; 61: Prieur et al. 2000; 62: Struve & Pogo 1928; 63: Ebbighausen 1953; 64: Pan et al. 1990; 65: Gorza & Heard 1971; 66: Tomkin et al. 1987; 67: Hilditch et al. 1988.

Table 1 lists the stars identified as VB-SB2. Columns mv1 and mv2contain the apparent visual magnitudes of both components. When the second column is blank, it is likely that the first one actually represents the overall visual magnitude of the binary. Columns Sp1 and Sp2 give the spectral types of both components. When only one spectrum is given, it is usually the overall system spectrum.

The column "Type'' identifies how the spectra were actually observed and processed. SB2 designates systems whose spectra of both components are clearly differentiable and the radial velocities can be measured without any supplementary assumption. LWSB (Line-Width Spectroscopic Binary; Duquennoy & Mayor (1991)) are systems whose spectra are never individually separated. In order to disentangle them and obtain the two radial velocities, some extra assumptions (e.g., line profiles) were necessary. The orbital parallax of LWSB and, therefore, the derived masses can be very sensitive to the Gaussians used to disentangle the spectra (e.g. HIP 75312). The column "Ref'' gives the references of the magnitudes and spectral types as well as all observations used for the adjustments.

A few systems are not analyzed even if they belong to the VB-SB2 category. The SB2 systems presented by Delfosse et al. (1999) are absent because neither the radial velocities nor the visual observations have been published yet. For the TPI systems (Malbet et al. 1998; Koresko et al. 1998; Boden et al. 1999), the nature of the visual observations is the reason why we disregarded them. Indeed, for the time being, our code cannot simultaneously fit radial velocities and optical interferometric raw data (i.e. visibilities). The reason for disregarding ADS 14396 is different. The way Griffin (1984) disentangled its spectra to obtain the individual radial velocities makes them very related to the visual orbit he used. We cannot therefore use them together with some visual observations and still claim we get bias-free results.

A few systems have already been described in details in previous papers: HIP 7580 (Pourbaix 1998), 14328 (Pourbaix 1999) and 71683/1 (Pourbaix et al. 1999). For all systems, we list the orbital parameters in Table 2. A few of these binaries are described slightly further. (Dis)agreement is always stated on a $3\sigma$ basis. If the two compared values are given with their own uncertainty, the agreement can be partial only whether the standard deviation of one result or the other is used. When the time interval is larger than the orbital period, the adopted periastron epoch is the one within that interval which maximizes the efficiency (Eichhorn 1989; Pourbaix & Eichhorn 1999).

HIP 2941: $M_{\rm A}=1.09\pm0.08$ $M_{\odot}$ and $M_{\rm B}=0.87\pm0.07$ $M_{\odot}$ are relatively close to the solution of Duquennoy & Mayor (1991). Adding some recent still unpublished radial velocities (Mayor & Udry, priv. comm.), we obtain $\varpi=66.0\pm2.2$ mas, $M_{\rm A}=0.94\pm0.088$ $M_{\odot}$ and $M_{\rm B}=0.70\pm0.070$ $M_{\odot}$ which are more consistent with the spectral types (Gliese 1969).

HIP 10644: Although the standard deviations of the orbital parameters are quite small, we are puzzled by the shape of the cross-correlation dip obtained with CORAVEL (Fig. 1 in the paper by Duquennoy & Mayor (1988a)). It suggests that the two profiles overlap almost every time. It is therefore difficult to imagine that precise radial velocities can be extracted for both components. The authors also assumed the orbit to be circular. Although the mass ratio is close to unity, their difference of magnitudes in blue is $2.0\pm0.2$ mag. No information is given in the paper about the potential inconsistency of these two results ( $\kappa\equiv\frac{M_{\rm B}}{M_{\rm A}+M_{\rm B}}\approx0.5$ and $\Delta m\approx2$ mag).

The simultaneous adjustment of the visual and spectroscopic data is a complete nightmare! In addition to the natural correlation between $\omega$ and T due to the nearly circular orbit, there is another strong, -0.996, correlation between i and $\varpi $. Within the confidence interval on the inclination (7$^\circ$-width), $\sin i$ ranges between 0.22 and 0.34. Therefore, a small variation on i implies a large variation on $\varpi $. That is the reason why our results are quite imprecise (and rather unreliable): $\varpi=136\pm30$mas, $M_{\rm A}=0.25\pm0.16$ $M_{\odot}$ and $M_{\rm B}=0.23$ $\pm$ 0.14 $M_{\odot}$. The parallax after Hipparcos (ESA 1997) is $92.2\pm0.84$ mas is consistent neither with our value nor with the estimate of Van Altena et al. (1991).

HIP 12390: This system was previously known as an SB1 (Abt & Levy 1976) with a somewhat uncertain period (Morbey & Griffin 1987). Using CORAVEL, Duquennoy & Mayor (1988a) could measure the spectra of both components and determined an SB2 orbit. As for HIP 10644, the two cross-correlation profiles (even at maximum separation) largely overlap. Using the visual orbit of Finsen (1970) (based on visual interferometric observations), Duquennoy & Mayor derived $\varpi=66\ \pm$ 10 mas (consistent with Gliese 1969), $M_{\rm A}=1.10\ \pm$ 0.21 $M_{\odot}$ and $M_{\rm B}=0.74\pm0.22$ $M_{\odot}$.

Hartkopf et al. (1989) determined a visual orbit based on almost ten years of speckle interferometric measurements. They did not look at the spectroscopic orbit and neither the parallax nor the masses were derived. One can, however, notice that the visual and spectroscopic orbits are not in perfect agreement. The solution of Hartkopf et al. does not agree with Finsen's either. Most of the visual interferometric observations used by Finsen (1970) have overestimated angular separations thus leading to an overestimated orbital parallax.

From the Hipparcos data and some photometric and astrometric assumptions, Martin & Mignard (1998) derived $M_{\rm A}=1.886~\pm~0.171$ $M_{\odot}$ and $M_{\rm B}=0.990~\pm$ 0.092 $M_{\odot}$. Their estimate for the secondary seems rather low for the announced spectral type F6V. Their mass ratio is also discrepant with respect to the spectroscopic one (Mazeh et al. 1992).

The spectroscopic data from Duquennoy & Mayor (1988a) and all speckle interferometric observations (Hartkopf et al. 1997) yield $\varpi=34.9\pm3.9$ mas, $M_{\rm A}=2.39\pm0.74$ $M_{\odot}$ and $M_{\rm B}=1.55\pm0.48$ $M_{\odot}$. That parallax is consistent with the Hipparcos one: $36.99\ \pm$ 1.76 mas.

HIP 20087: This system illustrates once again the improvement of the efficiency (Eichhorn 1989) when spectroscopic data are added to visual ones (Pourbaix & Eichhorn 1999). Eichhorn & Xu (1990) obtained 0.466 for the efficiency of the orbital parameters of the visual orbit. The present solution corresponds to 0.680, thus confirming the weaker correlation between the parameters.


   
Table 2: The semi-major axis of stars marked with * is expressed in seconds of arc instead of mas. $\varpi $ stands for the parallax and $\kappa $ for the fractional mass ( $\kappa =M_{\rm B}/(M_{\rm A}+M_{\rm B})$


HIP

a i $\omega$ $\Omega$ e P T V0 $\varpi $ $\kappa $ $M_{\rm A}$ $M_{\rm B}$
  (mas) ($^\circ$) ($^\circ$) ($^\circ$)   (yr) (Byr) (km s-1) (mas)   ($M_{\odot}$) ($M_{\odot}$)



677

24.0 105.6 257.4 284.4 0.535 0.26476 1988.5830 -10.0 33.0 0.298 3.8 1.63
$\pm$ 0.13 0.23 0.31 0.21 0.0046 0.000012 0.00026 0.32 0.62 0.0065 0.22 0.074
2941 667 77.6 317. 291.8 0.235 25.09 1898.5 18.4 66 0.42 0.94 0.70
$\pm$ 7.0 0.44 2.8 0.47 0.0096 0.029 0.17 0.13 2.2 0.016 0.088 0.079
4463 10.4 31. 210. 70.0 0.008 0.31682 1992.86 -10.4 13.1 0.474 2.6 2.3
$\pm$ 0.11 1.4 26 2.5 0.0054 0.000015 0.023 0.29 0.7 0.0091 0.35 0.31
7580 324 96.6 251.6 159.6 0.798 28.8 1989.92 47.8 27. 0.45 1.2 0.96
$\pm$ 5.4 0.33 0.67 0.73 0.0066 0.77 0.012 0.12 1.0 0.013 0.13 0.071
8903 36.0 47.5 204.9 83.3 0.8801 0.292941 1981.55900 -3.1 57.1 0.338 2.00 1.02
$\pm$ 0.16 0.54 0.33 0.27 0.00080 1.9e-06 1.8e-05 0.15 0.70 0.0026 0.053 0.032
10064 8.03 130.0 118.1 245.2 0.433 0.085941 1984.91300 12.3 24.2 0.281 3.5 1.4
$\pm$ 0.061 0.52 0.66 0.67 0.0041 5.2e-07 9.1e-05 0.66 0.63 0.0093 0.25 0.1
10644 9.8 163. 171. 37. 0.011 0.027433 1992.812 -6.6 136. 0.470 0.2 0.2
$\pm$ 0.13 3.6 29 1.9 0.0055 4.7e-07 0.0022 0.11 30 0.0098 0.16 0.14
10952* 0.94 147. 175. 158. 0.802 318. 1989.2 10.0 17. 0.4 1.1 0.7
$\pm$ 0.022 2.3 3.7 3.5 0.0072 17 0.14 0.98 1.4 0.12 0.32 0.26
12390 106. 24. 41. 270. 0.230 2.651 1983.15 15.5 35. 0.39 2.4 1.6
$\pm$ 1.5 2.5 3.4 2.8 0.0062 0.0018 0.011 0.19 3.9 0.015 0.74 0.48
12623 53.1 127.0 89.9 49.3 0.663 0.90622 1993.3410 -23.03 41.7 0.468 1.34 1.18
$\pm$ 0.66 0.76 0.30 0.57 0.0021 1.2e-05 0.00028 0.042 0.89 0.0013 0.042 0.037
14328 143.9 90.6 169.6 244.2 0.786 14.593 1947.279 3.2 14.7 0.423 2.5 1.86
$\pm$ 0.73 0.71 0.71 0.28 0.0038 0.0046 0.0083 0.13 0.19 0.0061 0.1 0.064
20087 132.9 125.5 339. 350.7 0.167 11.35 1977.74 37.86 17.5 0.45 1.9 1.5
$\pm$ 0.95 0.73 1.9 0.61 0.0044 0.021 0.056 0.099 0.61 0.017 0.14 0.2
20661 100. 125. 272. 215. 0.716 6.28 1988.714 39.6 21. 0.476 1.4 1.23
$\pm$ 3.1 1.6 1.1 1.7 0.0099 0.011 0.0074 0.11 1.1 0.0077 0.1 0.098
24608 56.4 137.2 269. 220.9 0.002 0.284809 1973.98 29.19 75.0 0.487 2.70 2.56
$\pm$ 0.11 0.19 26 0.31 0.0011 5.5e-06 0.021 0.074 0.57 0.0029 0.066 0.043
28360 3.38 75.0 319 294.5 0.000 0.010842 1975. -15.8 40.7 0.499 2.4 2.44
$\pm$ 0.046 0.73 - 0.72 0.0075 7.2e-09 - 0.51 0.77 0.0051 0.1 0.073
38382 602. 80.4 73.1 102.9 0.741 22.70 1985.92 -21.3 62. 0.48 0.93 0.9
$\pm$ 7.2 0.21 0.4 0.27 0.0070 0.027 0.021 0.16 2.6 0.018 0.082 0.12
45170 115.4 124.1 350.7 317.6 0.433 2.7052 1982.690 49.82 49.4 0.49 0.89 0.85
$\pm$ 0.63 0.64 0.81 0.46 0.0034 0.00095 0.0040 0.076 0.62 0.004 0.029 0.026
46404 406. 84.1 172. 150.8 0.25 34.5 1941.6 55.7 28. 0.37 1.7 1.0
$\pm$ 5.7 0.7 6.2 0.46 0.012 0.32 0.50 0.19 3 0.042 0.64 0.25
57565 7.33 49. 277.16 320. 0.000 0.196282 1979. 0.5 13.3 0.476 2.2 2.0
$\pm$ 0.096 1.2 - 1.1 0.0052 1.6e-06 - 0.21 0.45 0.0067 0.17 0.13
65378 10.0 61. 105.5 106. 0.529 0.056233 1963.15100 -6.3 40. 0.493 2.5 2.5
$\pm$ 0.32 1.2 0.79 1.1 0.0052 3.7e-07 7.6e-05 0.38 1.8 0.0041 0.11 0.12
71683/1* 17.59 79.23 231.8 204.82 0.519 79.90 1955.59 -21.87 737. 0.45 1.16 0.97
$\pm$ 0.028 0.046 0.15 0.087 0.0013 0.013 0.019 0.054 2.6 0.013 0.031 0.030
73182 133. 110. 311. 18. 0.765 0.8429 1986.3660 28.1 155. 0.420 0.51 0.37
$\pm$ 3.9 2.4 1.5 2.6 0.0083 0.00024 0.00082 0.25 6.5 0.0083 0.038 0.023
75312 860. 58.7 219.2 22.9 0.277 41.586 1892.317 -7.41 54.9 0.472 1.19 1.05
$\pm$ 3.3 0.16 0.37 0.19 0.0011 0.008 0.031 0.054 0.97 0.0091 0.071 0.05
85667 977. 99.1 148. 332.3 0.168 46.34 1870.0 -77.18 61. 0.481 0.98 0.90
$\pm$ 3.3 0.11 1.3 0.13 0.0025 0.021 0.16 0.069 1 0.0085 0.052 0.045


 
Table 2: continued
HIP a i $\omega$ $\Omega$ e P T V0 $\varpi $ $\kappa $ $M_{\rm A}$ $M_{\rm B}$
  (mas) ($^\circ$) ($^\circ$) ($^\circ$)   (yr) (Byr) (km s-1) (mas)   ($M_{\odot}$) ($M_{\odot}$)
87895 84. 68. 315. 359. 0.41 2.4143 1989.514 -32.9 37. 0.392 1.2 0.80
$\pm$ 3.0 2.4 1.9 1.4 0.011 0.00077 0.009 0.1 1.8 0.0079 0.11 0.055
88601* 4.554 121.16 14.0 302.12 0.4992 88.38 1895.94 -6.87 193. 0.46 0.90 0.78
$\pm$ 0.0052 0.078 0.14 0.097 0.00039 0.017 0.017 0.077 4.2 0.013 0.074 0.040
89937 123. 74.8 299.9 50.5 0.414 0.7680 1984.835 31.90 122. 0.416 1.03 0.73
$\pm$ 1.2 0.79 0.97 0.60 0.0083 0.00017 0.0015 0.14 2.1 0.0057 0.050 0.024
91636 239. 121. 348. 244. 0.910 92.2 1980.82 17.8 8.4 0.54 1.22 1.47
$\pm$ 3.4 1.6 1.7 1.1 0.0020 0.41 0.015 0.50 0.22 0.018 0.086 0.085
95995 86. 144. 356. 243. 0.360 1.3528 1985.271 11.31 59. 0.482 0.8 0.8
$\pm$ 1.4 2.4 2.1 1.5 0.0078 0.00072 0.0047 0.099 4.1 0.0050 0.15 0.14
96683 26.9 80.8 34. 251.0 0.542 1.18872 1936.169 5.2 14.2 0.491 2.46 2.39
$\pm$ 0.75 0.63 1.3 0.86 0.0063 4.1e-05 0.0017 0.14 0.42 0.0032 0.055 0.045
98416 150. 6. 142. 147. 0.592 4.895 1982.81 30.02 11. 0.45 53. 43.
$\pm$ 2.7 20.0 4.3 3.0 0.0094 0.0054 0.031 0.094 38. 0.022 530. 440.
99376 458. 115.3 159. 321.7 0.492 85.2 1970.4 -43.2 18. 0.44 1.2 0.9
$\pm$ 4.4 0.42 1 0.52 0.0033 0.12 0.18 0.20 1.0 0.044 0.23 0.17
99473 3.20 142. 211. 95. 0.59 0.046884 1964.1060 -28.0 14. 0.444 3.2 2.5
$\pm$ 0.075 3.1 3.3 3.2 0.013 2.9e-07 0.00012 0.52 1.2 0.0053 0.67 0.54
103655 690. 44. 129. 122. 0.72 29.5 1976.88 -33.97 45 0.24 3. 1.0
$\pm$ 50 8.9 3.3 6.5 0.014 0.66 0.048 0.095 14 0.057 2.7 0.65
104858 232. 99.0 8. 203.8 0.440 5.703 1981.47 -15.85 55.0 0.484 1.19 1.12
$\pm$ 1.8 0.43 1.0 0.29 0.0046 0.0070 0.012 0.074 0.67 0.0043 0.034 0.032
104987 12.0 153. 120. 34. 0.004 0.27056 1990.96 -17.6 18. 0.47 2.3 2.0
$\pm$ 0.14 3.1 30 3.8 0.0072 4.5e-05 0.022 0.21 2.0 0.012 0.77 0.66
108917 72. 68. 273. 85. 0.50 2.241 1970.992 -10.7 38. 0.26 1.0 0.36
$\pm$ 1.7 1.4 1.1 1.9 0.021 0.0027 0.0092 0.34 2.1 0.017 0.13 0.051
111170 71.6 67. 352. 262.4 0.38 1.7253 1979.330 -9.72 38. 0.353 1.4 0.78
$\pm$ 0.76 1.3 1.7 0.55 0.011 0.00097 0.0069 0.097 1.2 0.0098 0.14 0.051
111528 141. 60. 324. 294. 0.36 22.3 1985.2 6.86 13.3 0.487 1.22 1.16
$\pm$ 4.5 2.1 2.2 1.8 0.013 0.11 0.10 0.074 0.65 0.0072 0.094 0.091
114576 204. 104. 130. 106. 0.41 29.1 1983.2 34.5 16.7 0.39 1.3 0.84
$\pm$ 5.6 2.4 2.1 2.9 0.015 0.21 0.12 0.12 0.71 0.010 0.11 0.066

HIP 46404: Our parallax is quite discrepant with respect to the Hipparcos one: $32.01\pm1.02$. This discrepancy comes from the spectroscopy and, more precisely, from the two sets of radial velocities obtained by Duquennoy & Mayor (1988a) when they disentangled the blended spectra of this system. However, by re-processing the Hipparcos Transit Data, Söderhjelm (1999) has lately revised the "Hipparcos'' parallax down to $29.1\pm1.1$ mas which yields a mass sum of $2.54\pm0.41$ $M_{\odot}$ thus confirming our results.

HIP 73182: This system has all the features that made it a "tough case'' for the Hipparcos reduction teams. The semi-major axis has the same order of magnitude as the parallax. Moreover, the orbital period is close to one year. The consequence is a large confidence interval on the parallax: $133.63\,\pm\, 33.56$ mas. At this level of confidence, the consistency of this parallax with ours is just fortuitous! Söderhjelm (1999) has lately re-processed the Hipparcos Transit Data and derived $\varpi=169.7\pm1.0$ mas and a mass sum of $0.83\pm0.11$ $M_{\odot}$. His "Hipparcos'' parallax and ours do no longer agree although the mass sums are very consistent.

HIP 75312: Our initial parallax was quite discrepant with respect to the Hipparcos one $53.70\pm1.24$ mas. From the Hipparcos data, Söderhjelm (1999) derived $\varpi=53.5\pm0.9$ mas and a mass sum of $2.41\pm0.14$ $M_{\odot}$. Because we strongly believed that the way the CORAVEL data of this LWSB had been disentangled by the Geneva group was responsible for a large part of this discrepancy, we asked S. Udry to slightly tune the input parameters of the disentangling procedure, which he did. With these revised radial velocities (the procedure was applied to all RVs from Geneva), we now obtain: $\varpi=54.9\,\pm \,0.97$ mas, $M_{\rm A}=1.19\pm0.071$ $M_{\odot}$ and $M_{\rm B}=1.05\pm0.050$ $M_{\odot}$.

HIP 89937: Our adjustment yields $M_{\rm A}=1.03$ $\pm$ 0.050 $M_{\odot}$ and $M_{\rm B}=0.73\pm0.024$ $M_{\odot}$. The masses after Tomkin et al. (1987) as well as ours do not correspond well with what one expects for a F7V and a late G-type dwarf and the masses by Breakiron & Gatewood (1974) remain more likely.

HIP 103655: From the visual observations kept at US Naval Observatory and the radial velocities of A and B by Duquennoy & Mayor (1988b), we cannot derive any stable solution. Using the mass ratio of Fekel et al. (1978), we can compute the systemic velocities of Aa-Ab from the radial velocities of the two components. When these new "measurements'' are added to the set of radial velocities, the shape of the objective function (Pourbaix 1998) starts exhibiting some larger variations and, hence, a global minimum neighborhood. Nevertheless, this region remains valueless. We obtain $\varpi=45\pm14$ mas, $M_{\rm A}=3.1\ \pm$ 2.7 $M_{\odot}$ and $M_{\rm B}=1.0\pm0.65$ $M_{\odot}$. The only result we share with Russell & Gatewood (1980) seems to be the period: $29.5\pm0.6$ years.

Our parallax is totally discrepant with respect to the Hipparcos one, $66.21\pm2.54$ mas, the latter being consistent with the result by Russell & Gatewood (1980). Since both the spectroscopic and visual date are of poor quality, it was expected that the Hipparcos observations would improve the visual part. Söderhjelm (1999) has lately obtained a parallax of $66\pm1.8$ mas and a mass sum of $1.38\ \pm$ 0.34 $M_{\odot}$ from the Hipparcos Transit Data.


next previous
Up: Resolved double-lined spectroscopic binaries:

Copyright The European Southern Observatory (ESO)