next previous
Up: Long-term monitoring of selected sources


Subsections

3 Results

In the monitoring period of 5.5 years, the flux densities of the primary calibrators, 3C 48, 3C 138, 3C 147, 3C 286, 3C 295, and NGC 7027 (and also few other sources, as reported in Sect. 3.2), remained constant as expected at a level of about 2% at wavelength $\lambda \geq 2.8 $ cm, and about 3% at $\lambda=1.3 $ cm.

3.1 Light curves and source spectra

Light curves for each source are plotted in Figs. 1-20 at the four best observed wavelengths 11, 6, 2.8 and 1.3 cm. In case there are less than 3 data points at a given wavelength, the plot has been omitted. We make brief comments on individual sources in Sect. 4.

Spectra of all sources are presented in Figs. 21-25, by taking all fluxes measured at each wavelength over the 5.5 year monitoring period. Obviously, the flux variations of a source are reflected in its spectrum. Although the reliability of the spectra suffer from flux density variations, it is interesting to note that,

We also investigate variations of the spectral indices, by calculating a two-point power law spectrum (6 cm and 2.8 cm, simply derived from $\alpha_{2.8}^{6} = \frac{\ln(S_{6}/S_{2.8})}{\ln(\lambda_{6}/\lambda_{2.8})}$), for those sources showing correspondingly at least one pronounced outburst at both wavelengths with enough simultaneous measurements (with more than 8 data points) during the monitoring period. As seen from Figs. 26 and 27, the spectral indices ( $\alpha _{2.8}^{6}$) follow the expectations of shock models (Marscher & Gear 1985; Valtaoja et al. 1992; Qian 1996) that shocks propagate from an optically thick to an optically thin regime in each outburst, most evidently seen in sources 0235+164, 0528+165, 0716+714, 0804+499, 0836+710, 1641+399 and 2007+777, so that the variations in these sources were probably intrinsic.


 

  Table 2: Summary of source variabilities at 21 cm. N denotes number of observations during this 5.5 years period, <S> the mean flux in Jy, m the modulation index in % and $\chi ^{2}_{\rm red}$ the reduced $\chi ^{2}$ value (we denote > when the $\chi ^{2}_{\rm red} \ge 100.0$). For the statistical analysis (m and $\chi ^{2}_{\rm red}$), only data sets with N $\ge $ 8 are taken into consideration
Source N <S> [Jy] m [%] $\chi ^{2}_{\rm red}$
0134+329 6 $16.14\pm 0.21$    
0153+744 5 $ 1.95\pm 0.05$    
0212+735 5 $2.38\pm 0.03$    
0316+413 4 $27.28\pm 0.27$    
0420-014 2 $ 2.08\pm 0.10$    
0454+844 6 $0.28\pm 0.05$    
0518+165 6 $8.65\pm 0.09$    
0528+134 4 $2.46\pm 0.34$    
0538+498 4 $21.76\pm 0.14$    
0615+820 5 $0.69\pm 0.02$    
0716+714 7 $0.78\pm 0.07$    
0804+499 4 $0.97\pm 0.08$    
0835+580 5 $2.26\pm 0.02$    
0836+710 7 $3.47\pm 0.18$    
0851+202 2 $1.14\pm 0.07$    
0917+624 5 $1.24\pm 0.06$    
0954+658 5 $0.48\pm 0.04$    
1039+811 5 $0.76\pm 0.02$    
1150+812 5 $1.64\pm 0.07$    
1226+023 1 $51.88\pm 0.52$    
1253-055 1 $9.32\pm 0.09$    
1328+307 6 $14.65\pm 0.05$    
1409+524 6 $22.14\pm 0.11$    
1641+399 4 $7.54\pm 0.15$    
1652+398 3 $1.82\pm 0.04$    
1739+522 3 $1.43\pm 0.42$    
1749+701 5 $0.79\pm 0.02$    
1803+784 7 $2.07\pm 0.17$    
1823+568 3 $1.56\pm 0.04$    
1928+738 5 $3.95\pm 0.05$    
2007+777 6 $0.95\pm 0.16$    
2105+420 4 $1.39\pm 0.03$    
2200+420 3 $4.39\pm 0.34$    
2251+158 2 $14.35\pm 0.74$    



 

  Table 3: Summary of source variability at 18 cm
Source N <S> [Jy] m [%] $\chi ^{2}_{\rm red}$
0134+329 6 $14.00\pm 0.19$    
0153+744 2 $2.02\pm 0.01$    
0212+735 3 $2.33\pm 0.06$    
0316+413 7 $28.79\pm 0.68$    
0420-014 2 $2.22\pm 0.30$    
0454+844 2 $0.25\pm 0.03$    
0518+165 6 $7.76\pm 0.14$    
0528+134 3 $2.21\pm 0.05$    
0538+498 4 $19.79\pm 0.19$    
0615+820 2 $0.75\pm 0.02$    
0716+714 5 $0.78\pm 0.11$    
0804+499 3 $0.92\pm 0.05$    
0835+580 2 $1.93\pm 0.03$    
0836+710 7 $3.35\pm 0.15$    
0851+202 3 $1.41\pm 0.26$    
0917+624 8 $1.27\pm 0.06$ 4.6 5.0
0954+658 4 $0.48\pm 0.13$    
1039+811 2 $0.73\pm 0.04$    
1150+812 2 $1.61\pm 0.13$    
1226+023 7 $49.30\pm 1.77$    
1253-055 5 $10.01\pm 0.31$    
1328+307 10 $13.53\pm 0.11$ 0.9 0.2
1409+524 9 $19.27\pm 0.18$ 1.0 0.3
1641+399 5 $7.46\pm 0.38$    
1652+398 1 $1.80\pm 0.02$    
1749+701 2 $0.76\pm 0.02$    
1803+784 5 $2.25\pm 0.03$    
1928+738 8 $3.92\pm 0.15$ 4.0 6.2
2007+777 4 $1.01\pm 0.19$    
2105+420 7 $1.87\pm 0.03$    
2200+420 2 $3.18\pm 1.10$    
2251+158 4 $14.27\pm 0.36$    



 

  Table 4: Summary of source variabilities at 11 cm. In the last column we denote > when the $\chi ^{2}_{\rm red} \ge 100.0$
Source N <S> [Jy] m [%] $\chi ^{2}_{\rm red}$
0016+731 3 $1.35\pm 0.58$    
0134+329 24 $9.44\pm 0.09$ 0.9 0.5
0153+744 2 $1.86\pm 0.02$    
0212+735 3 $2.64\pm 0.24$    
0235+164 8 $1.31\pm 0.56$ 45.7 >
0316+413 7 $30.37\pm 2.46$    
0420-014 7 $2.35\pm 0.08$    
0454+844 15 $0.31\pm 0.06$ 19.4 >
0518+165 12 $5.71\pm 0.03$ 0.5 0.3
0528+134 15 $2.76\pm 0.23$ 8.5 26.8
0538+498 4 $13.34\pm 0.04$    
0615+820 2 $0.87\pm 0.03$    
0716+714 43 $0.64\pm 0.16$ 25.1 >
0735+178 2 $2.28\pm 0.01$    
0804+499 15 $1.02\pm 0.11$ 10.6 47.1
0835+580 8 $1.15\pm 0.01$ 0.4 0.2
0836+710 39 $2.60\pm 0.16$ 6.2 22.3
0851+202 17 $1.38\pm 0.18$ 13.2 94.0
0917+624 15 $1.40\pm 0.12$ 8.5 17.7
0923+392 15 $6.01\pm 0.20$ 3.5 5.2
0951+699 13 $5.03\pm 0.01$ 0.3 0.1
0954+658 20 $0.48\pm 0.11$ 23.6 >
1039+811 3 $0.79\pm 0.07$    
1150+812 6 $1.56\pm 0.16$    
1226+023 4 $45.20\pm 1.79$    
1328+307 31 $10.62\pm 0.07$ 0.7 0.3
1409+524 20 $12.28\pm 0.11$ 0.9 0.2
1458+718 6 $4.71\pm 0.09$    
1641+399 7 $8.34\pm 0.22$    
1652+398 8 $1.72\pm 0.05$ 3.1 3.8
1739+522 9 $1.37\pm 0.51$ 39.3 >
1749+701 4 $0.71\pm 0.04$    
1803+784 15 $2.34\pm 0.26$ 11.5 66.6
1823+568 1 $1.43\pm 0.01$    
1928+738 14 $3.91\pm 0.14$ 3.6 6.9
2007+777 13 $1.36\pm 0.15$ 11.1 79.6
2105+420 30 $3.69\pm 0.04$ 1.0 0.7
2200+420 14 $3.71\pm 0.63$ 17.6 >
2251+158 5 $13.77\pm 0.46$    



 

  Table 5: Summary of source variabilities at 6 cm. In the last column we denote > when the $\chi ^{2}_{\rm red} \ge 100.0$
Source N <S> [Jy] m [%] $\chi ^{2}_{\rm red}$
0016+731 15 $1.30\pm 0.47$ 37.5 >
0134+329 68 $5.53\pm 0.07$ 1.2 0.6
0153+744 12 $1.21\pm 0.04$ 3.8 6.0
0212+735 14 $3.08\pm 0.19$ 6.5 19.3
0235+164 19 $1.19\pm 0.84$ 72.3 >
0316+413 29 $25.71\pm 3.19$ 12.6 88.3
0420-014 14 $2.75\pm 0.30$ 11.5 51.9
0454+844 31 $0.32\pm 0.05$ 17.4 >
0518+165 35 $3.79\pm 0.04$ 1.2 0.6
0528+134 37 $4.29\pm 1.31$ 30.9 >
0538+498 13 $7.92\pm 0.08$ 1.0 0.5
0615+820 10 $0.77\pm 0.03$ 4.2 6.0
0716+714 74 $0.66\pm 0.25$ 37.7 >
0735+178 8 $1.91\pm 0.33$ 18.3 >
0804+499 35 $1.00\pm 0.28$ 28.4 >
0835+580 30 $0.60\pm 0.01$ 1.0 0.4
0836+710 75 $2.12\pm 0.21$ 10.2 45.2
0851+202 33 $1.62\pm 0.24$ 15.0 78.0
0917+624 45 $1.53\pm 0.09$ 5.8 10.1
0923+392 29 $10.98\pm 0.35$ 3.3 4.2
0951+699 32 $3.33\pm 0.03$ 0.8 0.3
0954+658 39 $0.50\pm 0.13$ 26.8 >
1039+811 12 $0.81\pm 0.06$ 7.9 22.6
1150+812 14 $1.50\pm 0.11$ 7.9 20.3
1226+023 20 $39.48\pm 2.32$ 6.0 11.8
1253-055 11 $14.40\pm 2.82$ 20.5 >
1328+307 74 $7.49\pm 0.07 $ 0.9 0.7
1409+524 39 $6.58\pm 0.08$ 1.1 0.7
1458+718 10 $3.36\pm 0.16$ 5.1 9.6
1641+399 27 $8.47\pm 0.29$ 3.4 3.8
1652+398 13 $1.59\pm 0.04$ 2.4 2.2
1739+522 21 $1.48\pm 0.48$ 33.1 >
1749+701 14 $0.69\pm 0.06$ 8.6 22.2
1803+784 40 $2.60\pm 0.23$ 9.1 31.8
1823+568 6 $1.64\pm 0.20$    
1928+738 36 $3.92\pm 0.16$ 4.2 6.8
2007+777 34 $1.39\pm 0.22$ 16.4 96.1
2105+420 66 $5.48\pm 0.06$ 1.0 0.5
2200+420 23 $3.90\pm 0.89$ 23.3 >
2251+158 26 $14.97\pm 1.65$ 11.3 49.4



 

  Table 6: Summary of source variability at 3.6 cm. In the last column we denote > when the $\chi ^{2}_{\rm red} \ge 100.0$
Source N <S> [Jy] m [%] $\chi ^{2}_{\rm red}$
0016+731 6 $1.39\pm 0.40$    
0134+329 9 $3.22\pm 0.04$ 1.2 0.4
0153+744 1 $0.64\pm 0.01$    
0212+735 1 $3.08\pm 0.04$    
0235+164 2 $2.48\pm 1.67$    
0316+413 21 $24.53\pm 2.39$ 10.0 14.0
0420-014 1 $3.00\pm 0.15$    
0454+844 5 $0.29\pm 0.06$    
0518+165 6 $2.37\pm 0.07$    
0528+134 7 $3.49\pm 0.70$    
0538+498 5 $4.67\pm 0.19$    
0615+820 1 $0.64\pm 0.01$    
0716+714 16 $0.82\pm 0.35$ 44.4 >
0735+178 1 $2.15\pm 0.03$    
0804+499 6 $1.36\pm 0.46$    
0835+580 5 $0.31\pm 0.01$    
0836+710 19 $1.84\pm 0.41$ 22.9 77.5
0851+202 8 $2.01\pm 0.26$ 13.9 30.0
0917+624 14 $1.71\pm 0.21$ 12.7 29.5
0923+392 11 $13.29\pm 0.41$ 3.2 1.1
0951+699 4 $2.12\pm 0.03$    
0954+658 8 $0.45\pm 0.16$ 38.5 >
1039+811 2 $0.95\pm 0.24$    
1226+023 5 $38.79\pm 3.14$    
1253-055 6 $14.66\pm 0.57$    
1328+307 20 $5.11\pm 0.07$ 1.5 0.4
1409+524 11 $3.38\pm 0.04$ 1.2 0.2
1458+718 2 $2.55\pm 0.04$    
1641+399 11 $8.45\pm 0.44$ 5.4 4.3
1652+398 3 $1.53\pm 0.04$    
1739+522 4 $1.20\pm 0.62$    
1749+701 3 $0.59\pm 0.05$    
1803+784 11 $2.51\pm 0.23$ 9.5 12.8
1928+738 5 $3.71\pm 0.22$    
2007+777 4 $1.31\pm 0.13$    
2105+420 12 $6.02\pm 0.12$ 2.0 0.3
2200+420 7 $3.17\pm 0.64$    
2251+158 3 $13.91\pm 1.05$    


   
3.2 Statistical analysis

We measure the degree of variability by deriving the modulation index $ m[\%] =100\times \frac{\sigma_{S}}{<S>} $, where < > denotes the mean. To see whether a source is variable, we performed a $\chi ^{2}$ test, $\chi^{2} \equiv \sum (\frac{S_{i}-<S>}{\sigma_{i}^{2}})^{2}$, (similarly to, e.g. Fanti et al. 1981 and Bondi et al. 1996), where the uncertainties $\sigma_{i}$ are a combination of the experimental uncertainties $\sigma_{{\rm e}i}$ and the statistical uncertainties $\sigma_{{\rm s}i}$ at the i-th epoch, i.e., $\sigma_{i}^{2}=\sigma_{{\rm e}i}^{2}+\sigma_{{\rm s}i}^{2}$ (Eqs. (6-1) in Bevington 1969).

Our data were not obtained under identical conditions but rather comprised various observations during such a long-term monitoring period. For each calibrator source, $\sigma_{{\rm s}i}$ is taken to be the standard deviation of the data set during the monitoring period, and for each target source, $\sigma_{{\rm s}i}$ is approximated by taking the value of the $m_{0, \rm max}\ \times <S>$, where $m_{0, \rm max} $ is the maximum of the m0 (the modulation index of a non-variable source) from calibrators at each wavelength. We take $m_{0, \rm max} $ as 1.0% at $\lambda \geq$ 11 cm, as 1.2, 2.0, 2.3 and 3.1% at $\lambda =6$, 3.6, 2.8 and 1.3 cm, and as 4.6% at $\lambda \leq 9$ mm respectively.

The statistical results (only for data sets with $N \geq 8 $ at each wavelength) are presented in Tables 2-11 for all sources at wavelengths of 21, 18, 11, 6, 3.6, 2.8, 2 and 1.3 cm, 9 and 7 mm respectively, with the source name, number of observations, the mean flux density with estimated error, the modulation index, and the reduced $\chi ^{2}_{\rm red}$. Obviously, the statistical results confirm that nearly all sources, with the exception of 0835+580 and 0951+699 and the six primary flux calibrators, are variable at a confidence level of more than 99.95% at most of the radio wavelengths over this 5.5 years period.


  

  Table 7: Summary of source variabilities at 2.8 cm. In the last column we denote > when the $\chi ^{2}_{\rm red} \ge 100.0$
Source N <S> [Jy] m [%] $\chi ^{2}_{\rm red}$
0016+731 5 $1.37\pm 0.41$    
0134+329 37 $2.58\pm 0.05$ 2.1 0.6
0153+744 7 $0.58\pm 0.01$    
0212+735 13 $3.18\pm 0.28$ 9.1 10.1
0235+164 15 $1.83\pm 1.29$ 73.0 >
0316+413 13 $22.23\pm 1.13$ 5.3 3.3
0420-014 14 $3.31\pm 0.30$ 9.3 12.7
0454+844 22 $0.28\pm 0.06$ 21.1 49.1
0518+165 28 $2.08\pm 0.05$ 2.3 0.5
0528+134 29 $4.84\pm 1.96$ 41.3 >
0538+498 6 $3.95\pm 0.08$    
0615+820 5 $0.58\pm 0.04$    
0716+714 59 $0.73\pm 0.39$ 54.0 >
0735+178 3 $1.23\pm 0.30$    
0804+499 23 $1.10\pm 0.50$ 46.4 >
0835+580 13 $0.24\pm 0.01$ 2.0 0.5
0836+710 58 $1.91\pm 0.52$ 27.3 >
0851+202 21 $1.82\pm 0.35$ 19.9 45.9
0917+624 29 $1.51\pm 0.16$ 10.8 9.4
0923+392 20 $13.11\pm 0.42$ 3.3 1.5
0951+699 12 $1.87\pm 0.03$ 1.8 0.4
0954+658 22 $0.52\pm 0.14$ 28.4 90.6
1039+811 11 $1.11\pm 0.08$ 7.4 7.8
1150+812 4 $1.51\pm 0.06$    
1226+023 6 $34.09\pm 4.03$    
1253-055 3 $23.14\pm 6.02$    
1328+307 44 $4.45\pm 0.06$ 1.3 0.3
1409+524 31 $2.60\pm 0.03$ 1.1 0.6
1458+718 12 $2.34\pm 0.17$ 7.6 8.4
1641+399 15 $7.96\pm 0.60$ 7.8 5.4
1652+398 13 $1.40\pm 0.04$ 2.7 0.9
1739+522 14 $1.52\pm 0.63$ 43.1 >
1749+701 4 $0.66\pm 0.10$    
1803+784 25 $2.70\pm 0.20$ 7.4 7.1
1823+568 8 $1.67\pm 0.33$ 21.0 62.4
1928+738 17 $3.76\pm 0.25$ 6.7 4.1
2007+777 23 $1.34\pm 0.17$ 13.2 22.0
2105+420 44 $6.05\pm 0.10$ 1.7 0.5
2200+420 20 $4.02\pm 0.63$ 16.1 28.8
2251+158 15 $12.03\pm 2.04$ 17.6 48.1




  Table 8: Summary of source variability at 2 cm
Source N <S> [Jy] m [%] $\chi ^{2}_{\rm red}$
0538+498 4 $2.88\pm 0.14$    
1409+524 7 $1.69\pm 0.05$    
1641+399 6 $7.73\pm 0.52$    
2105+420 6 $5.82\pm 0.13$    



  

  Table 9: Summary of source variabilities at 1.3 cm
Source N <S> [Jy] m [%] $\chi ^{2}_{\rm red}$
0016+731 2 $0.66\pm 0.19$    
0134+329 10 $1.11\pm 0.03$ 2.8 0.4
0153+744 2 $0.42\pm 0.02$    
0212+735 3 $2.25\pm 0.28$    
0235+164 4 $2.04\pm 1.78$    
0316+413 12 $17.23\pm 1.89$ 11.4 5.8
0420-014 9 $3.57\pm 0.44$ 12.9 3.4
0454+844 6 $0.33\pm 0.13$    
0518+165 10 $1.10\pm 0.03$ 3.1 0.3
0528+134 14 $4.17\pm 1.58$ 39.3 49.5
0538+498 5 $1.91\pm 0.11$    
0615+820 1 $0.40\pm 0.02$    
0716+714 19 $0.92\pm 0.55$ 60.9 92.3
0804+499 8 $1.10\pm 0.33$ 32.5 30.1
0836+710 49 $1.74\pm 0.38$ 22.2 23.9
0851+202 10 $1.92\pm 0.30$ 16.3 9.8
0917+624 10 $1.19\pm 0.09$ 7.5 3.2
0923+392 5 $11.13\pm 0.62$    
0951+699 2 $1.00\pm 0.06$    
0954+658 7 $0.55\pm 0.19$    
1150+812 1 $1.06\pm 0.06$    
1226+023 3 $34.27\pm 9.55$    
1328+307 16 $2.46\pm 0.05$ 1.9 0.2
1409+524 12 $0.92\pm 0.02$ 2.8 0.3
1458+718 2 $1.42\pm 0.22$    
1641+399 10 $7.45\pm 0.75$ 10.7 5.4
1652+398 8 $1.13\pm 0.07$ 6.5 1.6
1739+522 6 $1.64\pm 0.64$    
1749+701 1 $0.62\pm 0.05$    
1803+784 12 $2.27\pm 0.12$ 5.6 1.5
1928+738 9 $3.27\pm 0.27$ 8.8 3.0
2007+777 12 $1.16\pm 0.10$ 9.0 3.0
2105+420 22 $5.58\pm 0.10$ 1.8 0.2
2200+420 8 $4.00\pm 0.62$ 16.5 10.6
2251+158 6 $10.26\pm 3.44$    




  Table 10: Summary of source variability at 9 mm
Source N <S> [Jy] m [%] $\chi ^{2}_{\rm red}$
0134+329 10 $ 0.81\pm 0.02$ 2.2 0.3
0518+165 6 $ 0.76\pm 0.07$    
0716+714 21 $ 0.88\pm 0.53$ 60.9 54.5
0851+202 4 $ 2.03\pm 0.37$    
0917+624 10 $ 1.01\pm 0.07$ 6.9 0.6
0954+658 5 $ 0.45\pm 0.19$    
1328+307 15 $ 1.92\pm 0.03$ 1.7 0.1
1409+524 10 $ 0.56\pm 0.02$ 4.6 0.3
1652+398 4 $ 1.00\pm 0.03$    
1739+522 4 $ 1.57\pm 0.51$    
1928+738 4 $ 2.73\pm 0.29$    
2007+777 8 $ 1.05\pm 0.16$ 16.0 3.5
2105+420 15 $ 5.25\pm 0.14$ 2.7 0.3
2200+420 11 $ 3.61\pm 0.58$ 16.8 7.0
2251+158 3 $ 8.01\pm 1.14$    



 

  Table 11:Summary of source variability at 7 mm
Source N <S> [Jy] m [%] $\chi ^{2}_{\rm red}$
0134+329 7 $ 0.55\pm 0.07$    
0316+413 4 $11.87\pm 2.51$    
0518+165 5 $ 0.63\pm 0.05$    
0528+134 7 $ 4.39\pm 1.76$    
0716+714 6 $ 0.92\pm 0.53$    
0804+499 5 $ 1.08\pm 0.30$    
0836+710 25 $ 1.63\pm 0.32$ 20.2 7.7
0851+202 5 $ 1.52\pm 0.35$    
1328+307 7 $ 1.49\pm 0.03$    
1409+524 5 $ 0.44\pm 0.08$    
1641+399 6 $ 6.79\pm 0.74$    
1803+784 5 $ 1.89\pm 0.27$    
1928+738 4 $ 2.86\pm 0.32$    
2105+420 10 $ 5.01\pm 0.22$ 4.6 0.3


3.3 Variability dependence

We investigate whether there is any dependence of the degree of variability on either source galactic latitude ( $b^{\rm II}$), redshift (z), spectral indices ( $\alpha _{6}^{11}$ and $\alpha _{2.8}^{6}$ only), or superluminal motions by taking the modulation index of each source at 6 cm, where the sources have been observed most frequently.

As shown in Fig. 28, there is no obvious dependence of the degree of variability on most of the above mentioned quantities. This is confirmed by the formal estimates of the correlation probabilities (coefficients are less than 0.26) of these relationships with an exception, that is a weak correlation (coefficient is 0.48) between the degree of variability and the 6 to 2.8 cm spectral index. Both the degree of variability and its rate of occurrence appear to be higher when the source spectra are flatter. This is consistent with previous findings: sources with flat spectra are small, and are variable, while sources with steep spectra are less variable (Heeschen et al. 1987). Furthermore, there is a trend showing that the degree of variability decreases with increasing wavelength, as seen in Fig. 29 by taking only the derived m of the common 16 sources at the four wavelengths of 11, 6, 2.8 and 1.3 cm, which has been shown in other variability studies (e.g. Peng et al. 2000). The maximum values for m are derived to be 25.1, 37.7, 54.0 and 60.9% respectively at the four wavelengths sequenced above. This is contrary to the expectations of the interstellar scintillation (ISS, e.g. Rickett 1990), but in favor of shock models (e.g. Marscher & Gear 1985).


next previous
Up: Long-term monitoring of selected sources

Copyright The European Southern Observatory (ESO)