next previous
Up: Emission line AGNs from


4 Discussion

Although the objects presented here do not represent a complete sample, since the optical identification of the REX survey is still in progress, it is interesting to investigate what kind of AGNs is selected by combining an X-ray and a radio survey. In order to increase the statistics, we have used for this analysis all the Emission Line AGNs discovered in the REX survey so far. In particular, from the 232 EL objects available, we have selected the 226 with a firm determination of redshift. The majority of the objects identified from literature is composed by QSOs, i.e. type 1 objects. For the low-redshift objects the situation is less clear in particular if we want to apply uniformly the same criteria used for the sources observed by us. For this reason, in the following analysis we will not distinguish between Narrow and Broad Emission Line objects.

For all these sources we have computed the ratio (r) of the integrated to the peak NVSS flux densities, resulting from the Gaussian fit to the image (see Condon et al. 1998 for details); r is a good indicator of the compactness of the source at the survey resolution. The majority (74%) of the sources has a r below 1.1, i.e. they are unresolved in the NVSS maps. We note, however, that the NVSS survey has been carried out with the VLA in the less resolved configuration (DnC) and, thus, the corresponding beam is quite large (FWHM=45 $^{\prime\prime}$). This beam, at redshift of 0.9 (which is the mean z value of the 226 sources) corresponds to a linear size of about 470 kpc. Thus, even a typical lobe-dominated source at this redshift could be unresolved in the NVSS.

In Fig. 3 we have reported the histogram of the spectral indices of the 151 sources detected at 5 GHz in the GB6 or PMN catalog. Ninety-four objects (62%) are FS radio sources ( $\alpha\leq$ 0.5) and 57 (38%) are SS radio sources. Since compact, flat spectrum radio sources have a higher probability of being detected at 5 GHz (in the GB6 or PMN catalogs) we expect that our distribution is biased against steep spectrum sources. For this reason we have considered the 59 sources with a flux density at 1.4 GHz greater than 200 mJy and falling in the area of sky covered by the GB6 catalog (which is deeper than PMN): all these sources should be detectable at 5 GHz even if their radio spectrum is very steep ( $\alpha_{\rm R}\sim$ 2). These sources, represented by the shaded area in Fig. 3, are equally distributed between FS (51%) and SS (49%) radio sources. Their average radio slope is 0.41.

The redshift distribution of the 226 AGN is presented in Fig. 4. The majority (96%) of the sources have a redshift below 2. The mean value of z (=0.9) is the same found for the RL AGN in the EMSS (Della Ceca et al. 1994).

In Fig. 5 we present the monochromatic radio luminosities at 1.4 GHz versus the X-ray luminosities in the 0.5-2.0 keV band. We have considered here only the 151 AGNs for which we have computed the radio spectral index in order to reduce the uncertainties on the determination of the K-corrected radio luminosity which could be large for high redshift objects. Figure 5 shows a rather strong correlation between the radio and the X-ray luminosities. A least squares fit to the data gives $P_{1.4} \propto$ $L_{\rm X}^{1.06\pm0.04}$ (solid line in Fig. 5). This result is consistent (within $2\sigma$) with a linear ( $P_{1.4} \propto L_{\rm X}$) correlation between the two luminosities. The Spearman Rank-Order correlation coefficient gives a highly significant probability (>99.9%) that the two luminosities are correlated. However, a spurious correlation between luminosities is often observed in flux-limited surveys, due to the artificial correlation between luminosities and redshift. Since we do not see any evidence of a similar correlation between the radio and X-ray fluxes, it is possible that what we observe in Fig. 5 is simply the result of a selection effect. In order to exclude the effect of redshift in the analysis of the correlation bewteen the luminosities, we have used the partial correlation analysis described in Kendall & Stuart (1979). According to this method, we have computed the correlation coefficient ( $r_{\rm xr.z}$) between $L_{\rm X}$ and P1.4 excluding the dependence to the redshift in the following way:

\begin{displaymath}r_{\rm xr.z} = \frac{r_{\rm xr} - r_{\rm xz}r_{\rm rz}}{\sqrt{1-r_{\rm xz}^2}\sqrt{1-r_{\rm rz}^2}}
\end{displaymath}

where $r_{\rm xr}$, $r_{\rm xz}$ and $r_{\rm rz}$ are the Spearman Rank-Order correlation coefficients between $L_{\rm X}/P_{1.4}$, $L_{\rm X}/z$ and P1.4/z respectively. The analysis gives $r_{\rm xr.z}=0.09$ corresponding to a probability for the "null hypothesis'' (the two luminosities are unrelated) of $\sim$25%. Thus, once excluded the dependence to the redshift, our data do not show any strong evidence of a significant correlation between the two luminosities.

The distribution of X-ray luminosities is similar to that found for the RL AGNs in the EMSS (Della Ceca et al. 1994) and it is peaked at $L_{\rm X}=5\ 10^{45}$ erg s-1.


 

 
Table 1: Observing setup
Telescope/Instrument Grism name (g/mm) Dispersion Observing Period
    Å/pixel  
       
UH 88''+ WFGS blue (400) 4.2 1996 Jan. 14-15
UH 88''+ WFGS green (420) 3.7 1996 Aug. 7-11
UNAM 2.1 m + BC (300) 3.9 1996 Dec. 6-10
ESO 2.2 m + EFOSC2 G1 (100) 13.2 1996 Dec. 11-12
ESO 3.6 m + EFOSC1 b300 (300), r300 (300) 6.3, 7.5 1996 Dec. 9-10
UH 88''+ WFGS blue (400) 4.2 1997 Mar. 3-5
UH 88''+ WFGS blue (400) 4.2 1998 Feb. 26 - Mar. 1
UH 88''+ WFGS blue (400) 4.2 1998 Oct. 15-18





 
Table 2: Journal of observations carried out at the UH 88'' (continued on the next page)
Name NVSS Position (J2000) $F_{\rm X}^a$ S1.4b Set-upc Date Exposure
            Timed

1REXJ000513-2614.6

00 05 13.71 -26 14 37.2 1.36 37.4 420; 2.3 $^{\prime\prime}$ 08/96 1200
1REXJ001028+2047.8 00 10 28.80 +20 47 49.4 2.86 158.9 420; 2.3 $^{\prime\prime}$ 08/96 1200
1REXJ002031-1510.8 00 20 31.06 -15 10 49.1 1.93 16.6 420; 2.3 $^{\prime\prime}$ 08/96 900
1REXJ002841+0533.0 00 28 41.91 +05 33 04.0 1.56 7.1 420; 2.3 $^{\prime\prime}$ 08/96 1200
1REXJ004052-2902.2 00 40 52.42 -29 02 15.1 3.95 49.5 400; 1.5 $^{\prime\prime}$ 07/96 600
1REXJ004413+0051.6 00 44 13.82 +00 51 40.7 0.71 40.5 420; 2.3 $^{\prime\prime}$ 08/96 1800
1REXJ005924+2703.5 00 59 24.40 +27 03 32.9 1.21 113.4 400; 1.5 $^{\prime\prime}$ 10/98 420
1REXJ011035-1648.5 01 10 35.13 -16 48 31.3 9.36 59.5 420; 2.3 $^{\prime\prime}$ 08/96 2100
1REXJ012210+0931.7 01 22 10.66 +09 31 44.9 1.74 8.9 420; 2.3 $^{\prime\prime}$ 08/96 900
1REXJ012526+0856.5 01 25 26.80 +08 56 31.1 1.58 9.9 420; 2.3 $^{\prime\prime}$ 08/96 1800
J013707-2444.7 01 37 07.66 -24 44 47.8 *0.53 21.2 420; 2.3 $^{\prime\prime}$ 08/96 1800
1REXJ014318+0228.3 01 43 18.58 +02 28 20.7 0.45 15.8 420; 2.3 $^{\prime\prime}$ 08/96 1800
1REXJ015232-1412.6 01 52 32.06 -14 12 38.2 2.88 745.2 420; 2.3 $^{\prime\prime}$ 08/96 900
1REXJ020857-1003.2 02 08 57.04 -10 03 16.8 0.42 27.0 400; 1.5 $^{\prime\prime}$ 01/96 1800
1REXJ023556+1615.3 02 35 56.83 +16 15 23.9 5.04 129.9 400; 1.5 $^{\prime\prime}$ 10/98 900
1REXJ024613+1056.9 02 46 13.81 +10 56 56.7 20.10 19.9 420; 2.3 $^{\prime\prime}$ 08/96 900
J025057-1226.2 02 50 57.33 -12 26 15.8 *2.30 14.6 400; 1.5 $^{\prime\prime}$ 01/96 900
J025929+1925.7 02 59 29.65 +19 25 44.9 *2.34 169.9 400; 1.5 $^{\prime\prime}$ 01/96 1200
1REXJ030459+0002.5 03 04 59.24 +00 02 33.6 3.13 124.9 400; 1.5 $^{\prime\prime}$ 01/96 960
1REXJ031958+0355.9 03 19 58.82 +03 55 56.4 7.20 55.7 400; 1.5 $^{\prime\prime}$ 10/98 900
J033437-2559.5 03 34 37.63 -25 59 34.5 *0.76 28.9 420; 2.3 $^{\prime\prime}$ 08/96 1800
1REXJ034026-2234.9 03 40 26.29 -22 34 54.2 1.14 96.0 420; 2.3 $^{\prime\prime}$ 08/96 1200
1REXJ041322+2343.5 04 13 22.50 +23 43 35.3 5.46 62.3 400; 1.5 $^{\prime\prime}$ 10/98 900
1REXJ041734-1154.5 04 17 34.91 -11 54 34.2 26.70 30.8 400; 1.5 $^{\prime\prime}$ 10/98 1590
J053611+6027.3 05 36 11.23 +60 27 23.5 *9.80 13.7 400; 1.5 $^{\prime\prime}$ 01/96 900
1REXJ061757+7816.1 06 17 57.03 +78 16 09.0 1.02 156.9 400; 1.5 $^{\prime\prime}$ 02/98 1800
1REXJ065154+6955.4 06 51 54.56 +69 55 26.4 0.97 276.3 400; 1.5 $^{\prime\prime}$ 02/98 1800
J071635+7108.6 07 16 35.45 +71 08 38.7 *0.69 14.6 400; 1.5 $^{\prime\prime}$ 01/96 2400
1REXJ071859+7124.3 07 18 59.61 +71 24 18.0 0.75 182.7 400; 1.5 $^{\prime\prime}$ 01/96 1200
1REXJ073125+6718.7 07 31 25.55 +67 18 47.4 3.67 56.7 400; 1.5 $^{\prime\prime}$ 02/98 1200
J080017+3702.9 08 00 17.49 +37 02 59.8 1.81 30.9 400; 1.5 $^{\prime\prime}$ 03/97 900
1REXJ081108+4533.8 08 11 08.81 +45 33 49.4 1.41 81.0 400; 1.5 $^{\prime\prime}$ 02/98 1200
1REXJ082656+6542.5 08 26 56.86 +65 42 31.9 0.72 34.4 400; 1.5 $^{\prime\prime}$ 02/98 1800
1REXJ082733+2637.2 08 27 33.76 +26 37 16.5 0.56 102.4 400; 1.5 $^{\prime\prime}$ 02/98 1800
1REXJ085211+7627.3 08 52 11.88 +76 27 18.2 1.62 191.9 400; 1.5 $^{\prime\prime}$ 01/96 900

           



 

 
Table 2: continued
Name NVSS Position (J2000) $F_{\rm X}^a$ S1.4b Set-upc Date Exposure
            Timed
1REXJ092655-2345.4 09 26 55.95 -23 45 24.0 2.39 83.6 400; 1.5 $^{\prime\prime}$ 02/98 1800
J095701+3207.0 09 57 01.54 +32 07 04.7 *0.85 69.5 400; 1.5 $^{\prime\prime}$ 01/96 1200
1REXJ102106+4523.4 10 21 06.01 +45 23 28.5 5.27 131.2 400; 1.5 $^{\prime\prime}$ 03/97 900
1REXJ102556+1253.8 10 25 56.33 +12 53 49.0 2.67 539.4 400; 1.5 $^{\prime\prime}$ 02/98 1500
1REXJ103035+5132.5 10 30 35.18 +51 32 32.9 7.02 185.4 400; 1.5 $^{\prime\prime}$ 02/98 1800
1REXJ103206-1400.3 10 32 06.28 -14 00 19.9 1.32 196.1 400; 1.5 $^{\prime\prime}$ 03/97 1500
1REXJ121303+3247.6 12 13 03.81 +32 47 37.0 1.47 140.1 400; 1.5 $^{\prime\prime}$ 01/96 1200
1REXJ121815+0744.4 12 18 15.55 +07 44 28.2 1.03 5.1 400; 1.5 $^{\prime\prime}$ 02/98 900
1REXJ123519+6853.6 12 35 19.22 +68 53 36.8 1.65 126.5 400; 1.5 $^{\prime\prime}$ 02/98 1200
1REXJ133714-1319.2 13 37 14.85 -13 19 16.8 2.80 114.5 400; 1.5 $^{\prime\prime}$ 02/98 1500
1REXJ134133+3532.8 13 41 33.14 +35 32 53.7 2.18 77.7 400; 1.5 $^{\prime\prime}$ 03/97 1800
J134252+4032.0 13 42 52.97 +40 32 01.5 4.05 152.2 400; 1.5 $^{\prime\prime}$ 01/96 600
1REXJ134606+4859.6 13 46 06.12 +48 59 36.6 2.18 5.2 400; 1.5 $^{\prime\prime}$ 02/98 1500
1REXJ135409-0141.8 13 54 09.97 -01 41 50.4 1.76 39.1 400; 1.5 $^{\prime\prime}$ 02/98 1500
1REXJ140653+3433.6 14 06 53.86 +34 33 37.2 1.77 169.8 400; 1.5 $^{\prime\prime}$ 03/97 900
1REXJ141628+1242.2 14 16 28.64 +12 42 13.5 7.36 110.6 400; 1.5 $^{\prime\prime}$ 02/98 2400
J142744+3338.4 14 27 44.44 +33 38 28.6 *0.83 16.3 400; 1.5 $^{\prime\prime}$ 01/96 1500
1REXJ144544-2445.7 14 45 44.21 -24 45 42.1 4.57 210.5 400; 1.5 $^{\prime\prime}$ 02/98 1800
1REXJ152548+5828.8 15 25 48.20 +58 28 51.4 0.69 109.3 400; 1.5 $^{\prime\prime}$ 02/98 1200
1REXJ213248-0219.8 21 32 48.21 -02 19 50.5 7.80 29.1 400; 1.5 $^{\prime\prime}$ 10/98 900
1REXJ220451-1815.5 22 04 51.82 -18 15 35.4 10.40 38.5 400; 1.5 $^{\prime\prime}$ 10/98 1800
1REXJ223313+3405.0 22 33 13.05 +34 05 01.0 3.42 35.3 400; 1.5 $^{\prime\prime}$ 10/98 900
1REXJ230311-0859.3 23 03 11.03 -08 59 19.7 0.54 33.6 400; 1.5 $^{\prime\prime}$ 10/98 480
1REXJ235029-2620.7 23 50 29.61 -26 20 46.1 8.86 11.1 400; 1.5 $^{\prime\prime}$ 10/98 600
1REXJ235139-2605.0 23 51 39.37 -26 05 02.7 40.20 20.1 400; 1.5 $^{\prime\prime}$ 10/98 900



a X-ray fluxes, corrected for Galactic absorption, in the 0.5-2.0 keV band in units of 10-13erg s-1 cm-2; fluxes with an asterisk come from the 1RXP catalog (see text for details).

b Radio flux densities at 1.4 GHz in mJy.

c First column = Grism (400 = Grism 400 l/mm, 420 = Grism 420 l/mm); second column = slit width.

d Exposure time in seconds.



 

 
Table 3: Journal of observations carried out at the ESO telescopes
Name NVSS Position (J2000) $F_{\rm X}^a$ S1.4b Set-upc Exposure
          Timed
J001341-3009.4 00 13 41.24 -30 09 26.6 0.43 223.0 2.2 m; G1 1200
1REXJ005229-3743.8 00 52 29.01 -37 43 50.1 0.52 30.2 3.6 m; b300 600
J014716-0008.2 01 47 16.08 -00 08 17.7 1.14 5.0 3.6 m; b300 2400
1REXJ015429-1346.6 01 54 29.41 -13 46 36.4 0.46 74.3 3.6 m; b300 1200
J033953-2321.6 03 39 53.54 -23 21 36.7 0.33 36.6 3.6 m; b300, r300 840, 300
1REXJ035348-1020.2 03 53 48.77 -10 20 14.3 0.70 19.1 2.2 m; G1 1200
J040741-3102.7 04 07 41.85 -31 02 46.5 0.51 49.3 2.2 m; G1 720
1REXJ041405-1224.2 04 14 05.96 -12 24 17.0 3.06 93.8 2.2 m; G1 1200
1REXJ043851-2241.7 04 38 51.91 -22 41 44.3 0.83 217.0 2.2 m; G1 720
1REXJ044105-1616.1 04 41 05.05 -16 16 07.1 1.26 45.1 3.6 m; b300, r300 1200, 600
1REXJ044910-2015.4 04 49 10.33 -20 15 24.7 1.30 10.7 3.6 m; b300 1500
1REXJ045756-2237.7 04 57 56.98 -22 37 45.8 2.70 11.5 2.2 m; G1 1200
1REXJ053628-3401.1 05 36 28.46 -34 01 11.0 7.33 652.6 2.2 m; G1 900
1REXJ054129-3427.7 05 41 29.75 -34 27 43.1 0.73 33.1 2.2 m; G1 1080
1REXJ055722-1414.7 05 57 22.80 -14 14 42.4 1.74 5.5 3.6 m; b300 1200
1REXJ062437-1824.1 06 24 37.43 -18 24 08.4 6.02 6.5 3.6 m; b300 1260
J063114-2257.3 06 31 14.18 -22 57 19.8 *1.64 19.8 3.6 m; b300 300
J063155-2250.4 06 31 55.08 -22 50 24.2 *1.95 77.1 3.6 m; b300 1500
1REXJ085119+1358.4 08 51 19.81 +13 58 25.7 2.82 22.4 2.2 m; G1 720
1REXJ085312+1358.8 08 53 12.21 +13 58 53.3 0.46 17.4 2.2 m; G1 1500
1REXJ090015-2817.9 09 00 15.43 -28 17 58.6 2.61 512.1 2.2 m; G1 1080
J091235-0956.3 09 12 35.74 -09 56 21.8 5.35 57.1 3.6 m; b300 300
1REXJ105027-2816.0 10 50 27.31 -28 16 04.4 0.94 19.1 3.6 m; b300 1260
1REXJ110744-3043.5 11 07 44.07 -30 43 35.6 1.44 351.5 3.6 m; b300 600

         



a See Table 2.

b See Table 2.

c First column = telescope; second column = Grism. The slit width is always 1.5 $\hbox{$^{\prime\prime}$ }$.

d See Table 2.



 

 
Table 4: Journal of observations carried out at the UNAM 2.1 m
Name NVSS Position (J2000) $F_{\rm X}^a$ S1.4b Slit widthc Exposure
          Timed
J000640+2042.7 00 06 40.05 +20 42 45.0 0.50 80.5 1.6 4800
1REXJ022840-0935.2 02 28 40.81 -09 35 14.6 8.89 8.5 1.6 1800
1REXJ044754-0322.7 04 47 54.76 -03 22 43.2 10.80 87.3 1.6 900
1REXJ081041+0810.0 08 10 41.43 +08 10 00.5 3.33 198.7 1.6 3900
J091921+5048.9 09 19 21.77 +50 48 55.4 *4.77 46.5 1.6 2220
1REXJ101238+5242.4 10 12 38.56 +52 42 25.2 3.74 8.1 2.4 3000

         



a see Table 2.

b see Table 2.

c Slit width in arcseconds. d see Table 2.



 

 
Table 5: Emission Line AGNs identified in the REX survey (continued on the next page)
Name Class z Ca log $L_{\rm X}^b$ logP1.4c Emission Lines Absorption Lines
               

1REXJ000513-2614.6

B 0.32 F 43.92 32.21* H$\delta$,H$\gamma$,H$\beta$,[OIII],H$\alpha$  
1REXJ001028+2047.8 B 0.60 F 44.88 33.46 MgII,[OII],H$\delta$,H$\gamma$,H$\beta$,[OIII]  
1REXJ002031-1510.8 B 0.59 F 44.69 32.26* MgII,[OII],H$\gamma$,H$\beta$,[OIII]  
1REXJ002841+0533.0 B 1.43 T 45.58 32.33* MgII?  
1REXJ004052-2902.2 B 0.265 F 44.19 32.15* H$\delta$,H$\gamma$,H$\beta$,[OIII],H$\alpha$  
1REXJ004413+0051.6 B 0.93 F 44.75 33.22* MgII,[NeV]  
1REXJ005229-3743.8(1) B 1.60 F 45.23 33.45* CIV,CIII]  
1REXJ005924+2703.5 N 0.045 F 42.05 31.00 H$\beta$,[OIII],H$\alpha$/[NII],[SII]  
1REXJ011035-1648.5(2) B 0.783 F 45.68 33.56 MgII,H$\delta$,H$\gamma$,H$\beta$  
1REXJ012210+0931.7 B 0.33 F 44.05 31.47* [NeV],[OII],H$\gamma$,H$\beta$,[OIII],H$\alpha$  
1REXJ012526+0856.5 B 0.895 T 45.06 32.25* MgII?  
1REXJ014318+0228.3 B 0.83 T 44.43 32.52* MgII?  
1REXJ015232-1412.6 B 1.35 F 45.78 35.00 CIII],MgII,[OII]  
1REXJ015429-1346.6 B 1.01 F 44.65 33.54 CIII],MgII  
1REXJ020857-1003.2 B 1.74 F 45.22 33.49* CIV,CIII]  
1REXJ022840-0935.2 N 0.068 F 43.28 30.19* H$\gamma$,H$\beta$,[OIII],[OI],H$\alpha$,[SII]  
1REXJ023556+1615.3 B 0.256 F 44.26 32.57 H$\delta$,H$\gamma$,H$\beta$,[OIII],H$\alpha$  
1REXJ024613+1056.9 B 0.357 F 45.19 31.84 H$\delta$,H$\gamma$,FeII,H$\beta$,[OIII],H$\alpha$  
1REXJ030459+0002.5(3) B 0.564 F 44.86 33.33 MgII,[NeV],[OII],H$\delta$,H$\beta$,[OIII]  
1REXJ031958+0355.9 B 0.813 F 45.61 33.23 MgII,H$\gamma$  
1REXJ034026-2234.9 B 1.68 F 45.67 34.41 CIII],FeII,MgII  
1REXJ035348-1020.2 B 0.87 F 44.67 32.67* CIII],FeII,MgII,H$\beta$  
1REXJ041322+2343.5 B 0.309 F 44.49 32.41 FeII,H$\gamma$,H$\beta$,[OIII],H$\alpha$  
1REXJ041405-1224.2(4) B 0.570 F 44.87 33.27 MgII,[NeV],H$\delta$,H$\gamma$,H$\beta$,[OIII]  
1REXJ041734-1154.5 N 0.44 F 45.53 32.38* [OII] CaII H&K
1REXJ043851-2241.7 B 1.66 F 45.52 34.83 CIV,CIII],MgII  
1REXJ044105-1616.1 B 0.408 F 44.13 32.53* MgII,[OII],[OIII],H$\alpha$ CaII H&K
1REXJ044754-0322.7(5) B 0.773 F 45.73 33.48 FeII,MgII,FeII,[OII],H$\delta$,H$\gamma$  
1REXJ044910-2015.4 B 1.04 F 45.14 32.40* CIII],MgII  
1REXJ045756-2237.7 B 0.12 F 43.28 30.80* H$\alpha$ CaII H&K,G,MgI
1REXJ053628-3401.1 B 0.684 F 45.43 34.15 MgII,[NeV],H$\delta$,H$\gamma$,H$\beta$,[OIII]  
1REXJ054129-3427.7 B 1.60 F 45.38 33.40* SiIV/OIV],CIV,CIII],MgI  
1REXJ055722-1414.7 B 0.358 F 44.13 31.26* MgII,[OII],[NeIII],H$\delta$,H$\gamma$,H$\beta$,[OIII]  

             



 
Table 5: continued
Name Class z Ca log $L_{\rm X}^b$ logP1.4c Emission Lines Absorption Lines
               
1REXJ061757+7816.1 B 1.43 F 45.39 34.34 CIII],MgII  
1REXJ062437-1824.1 B 1.89 F 46.48 32.40* CIV,CIII]  
1REXJ065154+6955.4 B 1.36 F 45.35 34.64 CIII],MgII  
1REXJ071859+7124.3(6) B 1.408 F 45.28 34.60 CIII], MgII  
1REXJ073125+6718.7 B 0.17 F 43.74 31.78 H$\gamma$,H$\beta$,[OIII],H$\alpha$ CaII K
1REXJ081041+0810.0 B 0.391 F 44.51 33.20 [OII],[NeIII],H$\gamma$,H$\beta$,[OIII]  
1REXJ081108+4533.8 B 1.02 F 45.15 33.50 FeII,MgII,[OII],[NeIII],H$\delta$,H$\gamma$  
1REXJ082656+6542.5 B 0.956 F 44.79 33.41 MgII,H$\gamma$  
1REXJ082733+2637.2(7) B 0.69 F 44.34 33.52 MgII,[OII],H$\gamma$,[OIII]  
1REXJ085120+1358.3 B 0.95 F 45.37 33.06 CIII],MgII,[NeV],H$\delta$  
1REXJ085211+7627.3 B 1.127 F 45.32 34.34 CIII],MgII  
1REXJ085312+1358.8 B 1.16 F 44.81 33.05* CIII],MgII  
1REXJ090015-2817.9(8) B 0.89 F 45.29 34.46 CIII],MgII,[NeV],[OII],[NeIII],H$\gamma$,H$\beta$,[OIII]  
1REXJ092655-2345.4 B 1.17 F 45.54 33.72 CIII]?,MgII,[NeV]?  
1REXJ101238+5242.4 B 0.129 F 43.48 30.73* [OII],H$\delta$,H$\gamma$,H$\beta$,[OIII],[OI],H$\alpha$,[SII] MgI,NaID
1REXJ102106+4523.4(9) B 0.364 F 44.63 32.94 H$\gamma$,H$\beta$,[OIII],H$\alpha$  
1REXJ102556+1253.8(10) B 0.66 T 44.95 34.00 MgII?,[OII]?,H$\beta$?  
1REXJ103035+5132.5 B? 0.518 F 45.12 33.40 [OII],H$\gamma$,H$\beta$ CaII K
1REXJ103206-1400.3(11) B 1.059 T 45.17 34.00 MgII?,[OIII]?  
1REXJ105027-2816.0 B 0.41 F 44.01 32.11* MgII,[NeV],[OII],H$\gamma$?,H$\beta$ CaII H&K
1REXJ110744-3043.5 B 0.74 F 44.81 34.02 MgII,[NeV],[NeIII]  
1REXJ121303+3247.6 B 2.507 F 46.26 35.10 Ly$\alpha$,CIV,CIII]  
1REXJ121815+0744.4 N 0.155 F 43.10 30.62* [OIII],H$\alpha$,[SII]  
1REXJ123519+6853.6 B 1.14 F 45.35 34.05 CIII]?,MgII  
1REXJ133714-1319.2 B 3.47 F 46.79 35.24 Ly$\alpha$,OI,SiIV/OIV],CIV,CIII]  
1REXJ134133+3532.8 B 0.783 F 45.05 33.36 MgII,[OII],H$\gamma$,H$\beta$,[OIII]  
1REXJ134606+4859.6 B 0.187 F 43.60 30.82* H$\alpha$ CaII H&K
1REXJ135409-0141.8 B 0.98 F 45.20 33.25* MgII,[OII]  
1REXJ140653+3433.6 B 2.56 F 46.28 34.76 Ly$\alpha$,SiIV/OIV],CIV,CIII]  
1REXJ141628+1242.2 B 0.33 F 44.68 32.74 H$\gamma$,H$\beta$,[OIII],H$\alpha$  
1REXJ144544-2445.7 B 0.317 F 44.43 32.95 H$\delta$,H$\gamma$,H$\beta$,[OIII],H$\alpha$  
1REXJ152548+5828.8 B? 0.309 F 43.59 32.70 [OIII],H$\alpha$ CaII H&K,G
1REXJ213248-0219.8 B 0.103 F 43.60 31.11* [NeIII]?,H$\delta$,H$\gamma$,H$\beta$,[OIII],H$\alpha$  
1REXJ220451-1815.5 N 0.21 T 44.39 31.86* [OII]?,[OIII]?  
1REXJ223313+3405.0 B 0.63 F 45.01 32.76 MgII,[NeV],[OII],[NeIII],H$\gamma$,H$\beta$,[OIII]  
1REXJ230311-0859.3(12) N? 0.024 F 41.14 29.92* H$\alpha$ MgI,NaID
1REXJ235029-2620.7 B 0.217 F 44.35 31.26* [OII],[NeIII],H$\delta$,H$\beta$,[OIII],H$\alpha$  
1REXJ235139-2605.0 N 0.233 F 45.08 31.62* [OII],H$\beta$,[OIII],[OI],H$\alpha$,[SII]  

             





a Redshift confidence: F=firm, T=tentative.

b De-absorbed (Galactic) X-ray luminosity (0.5-2.0 keV band) in erg s-1.

c Monochromatic radio luminosity at 1.4 GHz in erg s-1Hz-1. An asterisk indicates that the luminosity has been computed assuming a lower limit on the radio spectral index (see text for details);



Notes:

(1) Also in Iovino et al. (1996) (z = 2.25 based on low dispersion prism observations).

(2) Also in Perlman et al. (1998) (z = 0.78).

(3) Also in Perlman et al. (1998) (z = 0.563).

(4) Also in Perlman et al. (1998) (z = 0.569).

(5) Also in Perlman et al. (1998) (z = 0.774).

(6) Also in Puchnarewicz et al. (1997) (z = 1.419).

(7) Also in Puchnarewicz et al. (1997) (z = 0.692).

(8) Also in Perlman et al. (1998) (z = 0.894).

(9) Also in Laurent-Muehleisen et al. (1998) (z = 0.364).

(10) Also in Perlman et al. (1998) (z = 0.663).

(11) Also in Perlman et al. (1998) (z = 1.039).

(12) Also in Da Costa et al. (1998) (z = 0.02413).



 

 
Table 6: Emission Line AGNs not included in the final version of the REX catalog
Name Class z Ca log $L_{\rm X}^b$ logP1.4c Emission Lines Absorption Lines
               
J000640+2042.7 B 1.00 T 44.70 33.78 MgII?  
J001341-3009.4 B 1.11 F 44.76 34.35 CIII],MgII  
J013707-2444.7(1) B 1.05 T 44.76 32.89* MgII?  
J014716-0008.2 N 0.466 F 44.22 31.41* [OII],[NeIII],H$\gamma$  
J025057-1226.2 B 1.004 T 45.35 32.60* MgII?  
J025929+1925.7 B 0.545 F 44.69 33.37 MgII,FeII,[NeV],H$\beta$  
J033437-2559.5 B 1.16 T 45.03 33.19* MgII?  
J033953-2321.6 B 3.49 F 46.87 34.44* OVI, Ly$\alpha$/NV,OI,SiIV/OIV],CIV,CIII]  
J040741-3102.7 B 1.40 F 45.07 33.58* CIV, CIII], MgII  
J053611+6027.3 B 0.07 F 43.35 30.45* [OIII],[OI],H$\alpha$,[SII]  
J063114-2257.3 B 0.86 T 45.03 32.68* MgII?  
J063155-2250.4 B 0.589 F 44.70 33.18* MgII,[OII]  
J071635+7108.6 B 1.553 F 45.32 33.20* CIV,OIII],CIII],MgII  
J080017+3702.9 B 0.819 F 45.02 32.88 MgII,FeII,[NeV],H$\gamma$,H$\beta$  
J091235-0956.3 B 0.361 F 44.63 32.55* MgII,[NeV],[NeIII],H$\gamma$,H$\beta$,[OIII]  
J091921+5048.9 B 0.915 T 45.58 33.45 MgII?  
J095701+3207.0 B 0.334 F 43.76 32.62 [OII],H$\delta$,H$\gamma$,H$\beta$,[OIII],H$\alpha$  
J134252+4032.0(2) B 0.909 T 45.48 33.82 MgII?  
J142744+3338.4 B 1.237 F 45.14 33.07* CIII],MgII  

             



a see Table 5.

b see Table 5.

c see Table 5.

Notes:

(1) Also in Lamer et al. (1997) (z = 1.050).

(2) Also in Hook et al. (1998) (z = 0.91).



  \begin{figure}{
\psfig{figure=h1886f4.eps,height=8cm,width=8cm} }
\vspace*{1cm}\par\end{figure} Figure 6: Radio-optical ( $\alpha _{\rm RO}$) vs. the X-ray-optical ( $\alpha _{\rm OX}$) spectral indices of the AGN present in the REX survey. Symbols are the same as in Fig. 5

In Fig. 6 we report the Radio-optical ( $\alpha _{\rm RO}$) versus the X-ray-optical ( $\alpha _{\rm OX}$) spectral indices of the 151 AGNs presented in Fig. 5. These indices are defined in the usual way (e.g. Stocke et al. 1991):

\begin{displaymath}\alpha_{\rm RO}={\rm Log}(S_{\rm 5~GHz}/S_{\rm 2500~\AA})/5.38
\end{displaymath}


\begin{displaymath}\alpha_{\rm OX}=- {\rm Log}(S_{\rm 2~keV}/S_{\rm 2500~\AA})/2.605
\end{displaymath}

where $S_{\rm 5~GHz}$, $S_{\rm 2500~\AA}$ and $S_{\rm 2~keV}$ are the K-corrected monochromatic flux densities at 5 GHz, 2500 Å and 2 keV respectively. The optical flux densities have been derived from the APM (Automatic Plate Measuring) O (blue) magnitude assuming $\alpha_{\rm O}=1$, while the monochromatic fluxes at 2 keV have been computed from the X-ray fluxes assuming $\alpha_{\rm X}=1$. In the radio band we have used the flux density at 5 GHz from GB6 or PMN. About 88% of the sources have an $\alpha_{\rm RO}\geq0.35$, which is the typical limit used to define an object as "radio-loud'' (RL, e.g. Della Ceca et al. 1994).


next previous
Up: Emission line AGNs from

Copyright The European Southern Observatory (ESO)