We analyse the annihilation of an electron and a positron producing emission
of one photon in a strong magnetic field.
It is likely that this annihilation process plays an important role in
understanding the
radiation mechanism in pulsars and in -ray burst events.
With the observational discovery of magnetars
(Vasisht & Gotthelf 1997; Kouveliotou et al. 1999),
superstrong magnetic fields, in the range
Gauss, are likely to exist, and calculations valid for such
strong fields are of great interest.
This process has been considered by previous authors.
One photon pair annihilation was first studied by Klepikov (1954), who evaluated
the lifetime of highly relativistic
beams traversing a magnetic field.
Daugherty & Bussard (1980)
obtained the cross-section
and
for the case
that electron and positron are in the Landau ground state.
They analyzed the cross
section for Gaussian distributions of parallel momentum.
Harding (1986)
studied the one-photon annihilation rate allowing electron and
positron to be in excited Landau states.
Wunner et al. (1986)
considered the effect of electron and positron polarization, and
found that the dominant annihilation rate is for the case that the electron
spin is opposite to and the positron spin parallel to the field.
Kaminker et al. (1987)
studied the two-photon pair annihilation process for the case
that the electron and positron are at rest and in the Landau ground state.
They found that the magnetic field broadens the spectra and leads to asymmetry
in the line around mc2 and that the angular distribution depends on magnetic
field, B, and photon energy,
,
with the peak emission
perpendicular to the field.
They argue that the annihilation radiation is linearly polarized, the degree
and orientation depending on B, emission angle to the field,
,
and
.
The polarization may reach tens of percent, even for comparatively
small fields
.
The critical value of the magnetic field is defined as
Gauss.
The polarization is large enough to be detected. However, detectors capable
of detecting polarization have not yet been flown in space (although
some are planned).
Other emission processes in strong magnetic fields include one and two photon emission
(bremsstrahlung) by electrons.
The first order (one photon) emission process is discussed by
Harding & Preece (1987)
Latal (1986),
Semionova (1983),
Herold et al. (1982),
White (1978)
and White (1974).
Bussard et al. (1986) calculate first and second order Compton scattering, in which
there is one photon in both the initial and final states, in the weak field
limit (
).
Semionova & Leahy (1999)
calculate the second order emission process, for the different
photon polarizations and electron spins, and for any value of magnetic field.
The purpose of this paper is to study the polarization of the annihilation radiation by generalizing previous calculations. The calculation is valid for non-zero values of the parallel momentum of the electron or positron and also valid for any value of magnetic field. To make this possible we use the wave functions of Sokolov & Ternov (1983) (for details see the discussion in Graziani 1983 and Semionova & Leahy 1999). We consider the different cases of electron and positron spin and of Landau level, and also calculate cross-sections for the different photon polarizations.
Copyright The European Southern Observatory (ESO)