The structure of coronal magnetic fields plays a crucial role in problems of heating and flare energy release, but our knowledge of it is rather limited as compared to photospheric level. The magnetic field in the corona cannot be measured with confidence from Zeeman splitting of coronal lines. Three main techniques are widely discussed in this context (Lee et al. [1998]): optical observations of vector magnetic fields in the photosphere and their extrapolation into the corona (McClymont et al. [1997]); EUV/X-ray observations which can reveal the projected paths of magnetic field lines via the density contrast between neighboring bundles of field lines (Yan & Sakurai [1997]); and spectral-polarization radio observations in the frequency domain of gyroresonance emission mechanism, which are sensitive to both the strength and the direction of the coronal magnetic field (Lang et al. [1993]; Abramov-Maximov et al. [1996]; Vourlidas et al. [1997]; see White & Kundu [1997] for review). These different techniques are complementary, each have its own advantages and disadvantages and should therefore be combined in order to make further progress.
The above techniques are effective when we deal with magnetic fields either at photospheric or the coronal levels, but the crucial intermediate region of the upper chromosphere is not accessible to those studies. Here we try to fill this gap by a detailed analysis of polarization-intensity spectra of free-free (i.e. bremsstrahlung) microwave emission from active regions (Bogod & Gelfreikh [1980]). Such techniques, combined with 2D microwave imaging, provide direct microwave magnetograms at the interface between chromosphere and corona (Grebinskij et al. [1998]) and may be important for an independent check of chromospheric and coronal fields interpolated from photospheric fields.
The magnetoionic theory (Ratcliffe [1959]) predicts
two modes of propagating electromagnetic radiation, ordinary and
extraordinary, with different opacities. The intensity of
polarized emission is proportional to the longitudinal component
of the magnetic field, which may be retrieved from
spectral-polarization observations by inversion techniques
(Gelfreikh [1972]). There are several important deficiencies which
limit the practical usage of the methods during the past years.
The thermal microwave emission from solar active regions is
generated by two basic mechanisms, i.e. gyroresonance line (at the
second and third harmonic of the electron gyrofrequency
Hz), and free-free continuum emission.
Polarization effects for free-free emission at high frequencies
are very weak and the circular polarization degree
is ranging between 0.1 and 10
,
both for weak
(prominences, plage areas, coronal holes) and strong (sunspot)
fields. At longer wavelengths the polarization increases as
(
)
for
optically thin emission (Grebinskij [1985]). At the frequencies
lower then (
)
the gyroresonance emission
becomes dominant above sunspot regions. Thus, the possibilities of
measurements (with free-free emission) of magnetic fields at
longer cm waves are limited above active regions. The relative
contributions of both emission mechanisms were widely discussed in
the seventies with the first RATAN, Westerbork and VLA
observations (see Alissandrakis et al. [1980] for review). The
gyroresonance emission dominates above sunspots at cm waves, where
the strong sunspot fields are strongly localized so that the
corona is mainly radiating free-free emission above plage regions
and between spots (see Gary & Hurford [1994]).
Thus, the main domain of free-free emission lies at short cm
wavelengths. Observations at
cm (Nobeyama
Radioheliograph) meet this condition for all active regions with
magnetic fields below B=2000 G, which correspond to the third
gyroresonance harmonic. In that frequency range the main
observational problem concerns the instrumental limitations of
measurements of the weak polarization effects. The most existing
instruments (OVRO, VLA) acquire and process data in a left-right
hand polarization modes and have an insufficient accuracy of
polarization measurements above
.
One-dimensional imaging
with RATAN provides a high dynamic range of about 1000:1, but its
fan-beam pattern diminishes the observed contrast. Single dish
observations (RT-22 of CrAO) have an insufficient angular
resolution (minutes of arc). For these instruments only a few
reliable results of free-free polarization measurements have been
reported: around
cm with the RT-22 (CrAO)
radio
telescope (Apushkinskiy & Topchilo [1976]) for polar prominences;
at
cm with the WSRT interferometer (Kundu et al. [1977]) for
plages;
at 2.3 - 4.0 cm with RATAN (Bogod & Gelfreikh [1980]) for plage
regions; at
decimetric wavelength with RATAN (Borovik et al. [1999]) for a coronal
hole.
This situation has changed with the construction of the Nobeyama
Radioheliograph. Its high operation frequency of 17 GHz gives
opportunities for studying rather strong fields
G,
and its high sensitivity of polarized imaging (with
)
opens possibilities for measuring weak fields
also. The design principles of the Nobeyama Radioheliograph
(Shibasaki et al. [1991]) make it especially appropriate for these
goals: (a) its data processing (Hanaoka et al. [1994]) is based on
the transformation of recorded data (in left-right polarizations)
to the Stoke's parameters I,V in the primary processing stage
(rough imaging before CLEAN), that gives a high dynamical range
(26 dB) both for
and V images, and (b) its high acquisition
rate (0.1 s) providing many possibilities for improvement of the
images (dynamic range through averaging, resolution enhancements
up to 10 arcsec etc.).
The main goal of this paper is to develop the practical methods of
solar magnetic field measurements, which are based on an analysis
of free-free emission recorded with Nobeyama radio maps
(
)
and RATAN - Metsahovi radiospectroscopy. The method uses an improved treatment of
radiation transfer equations and realistic model atmospheres,
based on mm waves Metsahovi observations (Urpo et al. [1987]). This
includes a number of problems, discussed below: the derivation of
the decoupled radiation transfer equations for the Stoke's
parameters I and V (see Appendix A); the problem of inversion
of those equations for the extraction of magnetic fields (Sect. 2);
a development of simplified model atmospheres to distinguish
contributions of the chromosphere and the corona in the observed
spectra (Sect. 3); the development of practically estimates of
magnetic fields (Sect. 4).
We illustrate and discuss these techniques with results of published and new (Nobeyama) observations (Sects. 5 and 6). Some further results, related to the study of strong sunspot fields with Nobeyama imaging, will be discussed separately (see Grebinskij et al. [1998]).
Copyright The European Southern Observatory (ESO)