We have obtained nearly 1.5 106 oscillator strengths for bound-bound transitions in Fe V. To our knowledge there are no previous ab initio relativistic calculations for transition probabilities for Fe V. The previous Opacity Project data consists of approximately 30000 LS transitions. Therefore the new dataset of nearly 1.5 106oscillator strengths should significantly enhance the database, and the range and precision of related applications, some of which we discuss later.
We divide the discussion of energies and oscillator strengths in the subsections below.
A total of 3 865 fine-structure bound levels of Fe V have been
obtained for
symmetries, 0
8 even and odd
parities. These belong to symmetries 2S+1 = 5, 3, 1, 0
9, with
and 0
9. The BPRM calculations
initially yield only the energies and the total symmetry,
,
of the levels. Through an identification procedure based on the
analysis of quantum defects and percentage channel contributions
for each level in the region outside the R-matrix boundary
(described in Nahar & Pradhan 2000), the levels are assigned with
possible designation of
,
which
specifies the core or target configuration, LS term and parity,
and total angular momentum; the principal and orbital angular momenta,
nl, of the outer or the valence electron; the total angular momentum,
J, and the possible LS term and parity,
,
of the
(N+1)-electron bound level. Table 1a presents a few partial sets
of energy levels from the complete set available electronically.
In Table 1b a limited selection of energy levels is presented in a
format different from
that in Table 1a. Here they are listed in ascending energy order
regardless of
values, and are grouped together within the
same configuration to show the correspondence between the sets of
J-levels and the LS terms. This format provides a check of
completeness of sets of energy levels in terms of LS terms, and
also determines the missing levels. Levels grouped in such a manner also
show closely spaced energies, consistent with the fact that they are
fine-structure components with a given LS term
designation. The title of each set in Table 1b lists all possible
LS terms that can be formed from the core or target term, and outer
or the valence electron angular momentum. "Nlv'' is the total number
of J-levels that correspond to the set of LS terms. The spin
multiplicity (2S+1) and parity (
)
are given next. The J values for
each term is given within parentheses next to the corresponding L. At
the end of the set of levels, "Nlv(c)'' is the total number of J-levels
obtained in the calculations. Hence, if Nlv = Nlv(c) for a set of levels
of the same configuration the set is designated as "complete''.
Most sets of fine-structure components between LS multiplets are found to be complete. High lying energy levels often belong to incomplete sets. The possible LS terms for each level is specified in the last column. It is seen that a level may possibly belong to several LS terms. In the absence any other criteriion, the proper term for the level may be assumed by applying Hund's rule: with levels of the same spin multiplicity, the highest L-level is
![]() |
![]() |
![]() |
![]() |
nl | J | E(cal) | ![]() |
![]() |
Nlv = 5, 5,e: | F ( 5 4 3 2 1 ) | ||||||
3d3 |
(4Fe) | 3/2 | 4s | 1 | -3.73515E+00 | 2.59 | 5 F e |
3d3 | (4Fe) | 5/2 | 4s | 2 | -3.73238E+00 | 2.59 | 5 F e |
3d3 | (4Fe) | 5/2 | 4s | 3 | -3.72820E+00 | 2.59 | 5 F e |
3d3 | (4Fe) | 7/2 | 4s | 4 | -3.72275E+00 | 2.59 | 5 F e |
3d3 | (4Fe) | 9/2 | 4s | 5 | -3.71610E+00 | 2.59 | 5 F e |
Ncal = 5: set complete | |||||||
Nlv = 3, 3,e: | F ( 4 3 2 ) | ||||||
3d3 |
(4Fe) | 3/2 | 4s | 2 | -3.63808E+00 | 2.62 | 3 F e |
3d3 | (4Fe) | 7/2 | 4s | 3 | -3.63107E+00 | 2.62 | 3 F e |
3d3 | (4Fe) | 9/2 | 4s | 4 | -3.62225E+00 | 2.62 | 3 F e |
Ncal = 3: set complete | |||||||
Nlv = 3, 1,o: | P ( 1 ) D ( 2 ) F ( 3 ) | ||||||
3d3 1 |
(2De) | 3/2 | 4p | 2 | -2.45812E+00 | 2.83 | 1 D o |
3d3 1 | (2De) | 5/2 | 4p | 3 | -2.40581E+00 | 2.86 | 1 F o |
3d3 1 | (2De) | 5/2 | 4p | 1 | -2.33944E+00 | 2.89 | 1 P o |
Ncal = 3: set complete | |||||||
Nlv = 23, 5,e: | P ( 3 2 1 ) D ( 4 3 2 1 0 ) F ( 5 4 3 2 1 ) G ( 6 5 4 3 2 ) H ( 7 6 5 4 3) | ||||||
3d3 |
(4Fe) | 3/2 | 4d | 3 | -2.37021E+00 | 3.25 | 5 PDFGH e |
3d3 | (4Fe) | 5/2 | 4d | 4 | -2.36647E+00 | 3.25 | 5 DFGH e |
3d3 | (4Fe) | 5/2 | 4d | 5 | -2.36189E+00 | 3.25 | 5 FGH e |
3d3 | (4Fe) | 3/2 | 4d | 1 | -2.35988E+00 | 3.25 | 5 PDF e |
3d3 | (4Fe) | 7/2 | 4d | 6 | -2.35651E+00 | 3.25 | 5 GH e |
3d3 | (4Fe) | 5/2 | 4d | 2 | -2.35541E+00 | 3.26 | 5 PDFG e |
3d3 | (4Fe) | 9/2 | 4d | 7 | -2.35041E+00 | 3.25 | 5 H e |
3d3 | (4Fe) | 5/2 | 4d | 1 | -2.34932E+00 | 3.26 | 5 PDF e |
3d3 | (4Fe) | 9/2 | 4d | 3 | -2.34736E+00 | 3.25 | 5 PDFGH e |
3d3 | (4Fe) | 9/2 | 4d | 3 | -2.34736E+00 | 3.25 | 5 PDFGH e |
3d3 | (4Fe) | 7/2 | 4d | 2 | -2.34633E+00 | 3.26 | 5 PDFG e |
3d3 | (4Fe) | 3/2 | 4d | 2 | -2.34397E+00 | 3.27 | 5 PDFG e |
3d3 | (4Fe) | 7/2 | 4d | 4 | -2.34329E+00 | 3.26 | 5 DFGH e |
3d3 | (4Fe) | 5/2 | 4d | 3 | -2.34092E+00 | 3.26 | 5 PDFGH e |
3d3 | (4Fe) | 9/2 | 4d | 3 | -2.33989E+00 | 3.26 | 5 PDFGH e |
3d3 | (4Fe) | 9/2 | 4d | 5 | -2.33822E+00 | 3.26 | 5 FGH e |
3d3 | (4Fe) | 7/2 | 4d | 5 | -2.33234E+00 | 3.27 | 5 FGH e |
3d3 | (4Fe) | 9/2 | 4d | 6 | -2.32699E+00 | 3.26 | 5 GH e |
3d3 | (4Fe) | 3/2 | 4d | 4 | -2.28772E+00 | 3.31 | 5 DFGH e |
3d3 | (4Fe) | 3/2 | 4d | 0 | -2.28673E+00 | 3.31 | 5 D e |
3d3 | (4Fe) | 7/2 | 4d | 1 | -2.28265E+00 | 3.30 | 5 PDF e |
3d3 | (4Fe) | 9/2 | 4d | 2 | -2.27468E+00 | 3.30 | 5 PDFG e |
3d3 | (4Fe) | 7/2 | 4d | 3 | -2.26346E+00 | 3.31 | 5 PDFGH e |
3d3 | (4Fe) | 9/2 | 4d | 4 | -2.25835E+00 | 3.31 | 5 DFGH e |
Ncal = 23: set complete | |||||||
Nlv = 3, 1,e: | P ( 1 ) D ( 2 ) F ( 3 ) | ||||||
3d3 | (2Pe) | 3/2 | 4d | 1 | -2.08815E+00 | 3.26 | 1 P e |
3d3 | (2Pe) | 1/2 | 4d | 2 | -1.95699E+00 | 3.41 | 1 D e |
3d3 | (2Pe) | 3/2 | 4d | 3 | -1.94667E+00 | 3.38 | 1 F e |
Ncal = 3: set complete | |||||||
Nlv = 15, 3,e: | P ( 2 1 0 ) D ( 3 2 1 ) F ( 4 3 2 ) G ( 5 4 3 ) H ( 6 5 4 ) | ||||||
3d3 |
(4Fe) | 3/2 | 4d | 1 | -2.35634E+00 | 3.26 | 3 PD e |
3d3 | (4Fe) | 5/2 | 4d | 2 | -2.35219E+00 | 3.25 | 3 PDF e |
3d3 | (4Fe) | 7/2 | 4d | 3 | -2.34872E+00 | 3.25 | 3 DFG e |
3d3 | (4Fe) | 5/2 | 4d | 4 | -2.33701E+00 | 3.27 | 3 FGH e |
3d3 | (4Fe) | 5/2 | 4d | 5 | -2.28113E+00 | 3.31 | 3 GH e |
3d3 | (4Fe) | 3/2 | 4d | 3 | -2.28060E+00 | 3.31 | 3 DFG e |
3d3 | (4Fe) | 7/2 | 4d | 4 | -2.27417E+00 | 3.31 | 3 FGH e |
3d3 | (4Fe) | 9/2 | 4d | 6 | -2.27323E+00 | 3.30 | 3 H e |
3d3 | (4Fe) | 3/2 | 4d | 2 | -2.26789E+00 | 3.32 | 3 PDF e |
3d3 | (4Fe) | 7/2 | 4d | 5 | -2.26632E+00 | 3.31 | 3 GH e |
3d3 | (4Fe) | 5/2 | 4d | 0 | -2.24585E+00 | 3.33 | 3 P e |
3d3 | (4Fe) | 5/2 | 4d | 1 | -2.24483E+00 | 3.33 | 3 PD e |
3d3 | (4Fe) | 7/2 | 4d | 2 | -2.24278E+00 | 3.33 | 3 PDF e |
3d3 | (4Fe) | 7/2 | 4d | 3 | -2.23973E+00 | 3.33 | 3 DFG e |
3d3 | (4Fe) | 9/2 | 4d | 4 | -2.23571E+00 | 3.33 | 3 FGH e |
![]() |
![]() |
![]() |
nl | J | E(cal) | ![]() |
![]() |
Ncal = 15: set complete | |||||||
Nlv = 13, 3,e: | S ( 1 ) P ( 2 1 0 ) D ( 3 2 1 ) F ( 4 3 2 ) G ( 5 4 3 ) | ||||||
3d3 2 | (2De) | 5/2 | 5d | 1 | -1.05446E+00 | 4.36 | 3 SPD e |
3d3 2 | (2De) | 5/2 | 5d | 5 | -1.04247E+00 | 4.38 | 3 G e |
3d3 2 | (2De) | 3/2 | 5d | 3 | -1.04179E+00 | 4.38 | 3 DFG e |
3d3 2 | (2De) | 3/2 | 5d | 1 | -1.03332E+00 | 4.40 | 3 SPD e |
3d3 2 | (2De) | 5/2 | 5d | 4 | -1.03014E+00 | 4.40 | 3 FG e |
3d3 2 | (2De) | 5/2 | 5d | 2 | -1.02889E+00 | 4.40 | 3 PDF e |
3d3 2 | (2De) | 3/2 | 5d | 0 | -1.02130E+00 | 4.42 | 3 P e |
3d3 2 | (2De) | 5/2 | 5d | 1 | -1.01682E+00 | 4.43 | 3 SPD e |
3d3 2 | (2De) | 5/2 | 5d | 3 | -1.01420E+00 | 4.43 | 3 DFG e |
3d3 2 | (2De) | 3/2 | 5d | 2 | -1.00936E+00 | 4.44 | 3 PDF e |
3d3 2 | (2De) | 3/2 | 5d | 2 | -9.92578E-01 | 4.47 | 3 PDF e |
3d3 2 | (2De) | 5/2 | 5d | 3 | -9.81500E-01 | 4.49 | 3 DFG e |
Ncal = 12 , Nlv = 13: set incomplete, level missing: 4 |
Only a limited number of observed energy levels of Fe V are available (Sugar
& Corliss 1985). All 179 observed levels were identified in a
straightforward manner by the program PRCBPID. The
present results are found to agree to about 1% with the observed
energies for most of the levels (Table III, Nahar & Pradhan 2000).
In Table 2, a
comparison is presented for the 3d4 levels. The
experimentally observed levels are also the lowest calculated levels
in Fe V. The additional information in Table 2 is the level index,
IJ, next to the J-values. As the BPRM levels are designated with
values only, the level index shows the energy position, in
ascending order, of the level in the
symmetry. It is necessary
to use the level indices to make the correspondence among the
calculated and the observed levels for later use.
Although the LS term designation in general meets consistency checks,
it is possible that there is some uncertainty in the designations. The
spin multiplicities of the ion are obtained by the addition of
the angular momentum 1/2
of the outer electron to the total spin, ,
of the target. The
higher multiplicity corresponds to the addition of +1/2, and the
lower one to the subtraction of -1/2. Typically the level with higher
multiplicity
lies lower. Due to the large number of different channels representing the
levels of a
symmetry, it is
possible that this angular addition might have been interchanged for
some
cases where the channels themselves are incorrectly identified.
Therefore, for example, a triplet could be represented by a singlet
and vice versa. This can affect the Ldesignation since a singlet can be assigned only to one single total L,
whereas a triplet can be assigned to a few possible L values. For such
cases, the LS multiplets may not represent the correct transitions.
We emphasize, however, that the present calculations are all in intermediate coupling and the LS coupling designations attempted in this work are carried out only to complete the full spectroscopic identification that may be of interest for (a) specialized users such as experimentalists, and (b) as a record of all possible information (some of which may be uncertain) that can be derived from the BPRM calculations for bound levels.
The bound-bound transitions among the 3865 fine-structure levels of Fe V have resulted in 1.46 106 oscillator strengths for dipole-allowed and intercombination transitions.
Table 3 presents a partial set, in the format adopted, from the
complete file of oscillator strengths. The two numbers at the
beginning of the table are the nuclear charge (i.e. Z = 26) and the
number of electrons (
= 22) for Fe V. Below this line are
the sets of transitions of a pair of symmetries
.
The first line of each set contains values of 2J, parity
(=0 for even and =1 for odd), 2J' and
.
Hence in Table 3,
the set of transitions given are among
.
The line following the transition symmetries specifies the number of
bound levels, NJi and NJj, of the symmetries among which
the transitions occur. This line is followed by
transitions. The first two columns are the level indices, Ii and
Ij (as mentioned above) for the energy indices of the levels, and
the third and the fourth columns are their energies, Ei and Ej,
in Rydberg units. The fifth and sixth columns are gfLand gfV,
where fL and fV are the oscillator strengths in
length and velocity forms, and g = 2J+1 (J is the total
angular momentum of the lower level).
For the gf-values that are negative the lower level is i(absorption) and for the
positive ones the lower level is j (emission). The last column gives the
transition probability,
.
To obtain the identification
of the levels, Table 1a should be referrred to following Ii and Ij.
For example, the second transition of Table 3 corresponds to
the intercombination transition 3d4(5D
3d3(4F
4p(3D
.
As the observed energies are much more precisely known that the
calculated ones, the f and A-values can be reprocessed with the
observed energies for some improvement in accuracy. Using the
energy independent BPRM line strength, S (Eq. 7), the f-value
can be obtained as,
![]() |
(13) |
Transitions among all observed levels have been so
reprocessed. This recalculated subset consists of 3737
dipole-allowed and intercombination transitions among the 179
observed levels (a relatively small part of the present transition
probabilities dataset). The calculated energy level indices
corresponding to the observed levels for each
are
listed in Table 4.
Level | J | IJ | ![]() |
![]() |
|
3d4 | 5D | 4 | 1 | 5.5493 | 5.5015 |
3d4 | 5D | 3 | 1 | 5.5542 | 5.5058 |
3d4 | 5D | 2 | 1 | 5.5580 | 5.5094 |
3d4 | 5D | 1 | 1 | 5.5607 | 5.5119 |
3d4 | 5D | 0 | 1 | 5.5621 | 5.5132 |
3d42 | 3P | 2 | 2 | 5.3247 | 5.2720 |
3d42 | 3P | 1 | 2 | 5.3389 | 5.2856 |
3d42 | 3P | 0 | 2 | 5.3471 | 5.2940 |
3d4 | 3H | 6 | 1 | 5.3074 | 5.2805 |
3d4 | 3H | 5 | 1 | 5.3111 | 5.2833 |
3d4 | 3H | 4 | 2 | 5.3143 | 5.2860 |
3d42 | 3F | 4 | 3 | 5.3043 | 5.2674 |
3d42 | 3F | 3 | 2 | 5.3064 | 5.2686 |
3d42 | 3F | 2 | 3 | 5.3076 | 5.2693 |
3d4 | 3G | 5 | 2 | 5.2581 | 5.2359 |
3d4 | 3G | 4 | 4 | 5.2614 | 5.2384 |
3d4 | 3G | 3 | 3 | 5.2651 | 5.2415 |
3d42 | 1G | 4 | 5 | 5.2006 | 5.1798 |
3d4 | 3D | 3 | 4 | 5.1950 | 5.1794 |
3d4 | 3D | 2 | 4 | 5.1945 | 5.1782 |
3d4 | 3D | 1 | 3 | 5.1928 | 5.1767 |
3d4 | 1I | 6 | 2 | 5.1852 | 5.1713 |
3d42 | 1S | 0 | 3 | 5.1700 | 5.1520 |
3d42 | 1D | 2 | 5 | 5.1353 | 5.0913 |
3d4 | 1F | 3 | 5 | 5.0476 | 5.0326 |
3d41 | 3P | 2 | 6 | 4.9756 | 4.9495 |
3d41 | 3P | 1 | 4 | 4.9663 | 4.9398 |
3d41 | 3P | 0 | 4 | 4.9616 | 4.9352 |
3d41 | 3F | 4 | 6 | 4.9719 | 4.9460 |
3d41 | 3F | 3 | 6 | 4.9706 | 4.9449 |
3d41 | 3F | 2 | 7 | 4.9712 | 4.9453 |
3d41 | 1G | 4 | 7 | 4.8830 | 4.8636 |
3d41 | 1D | 2 | 8 | 4.6609 | 4.6581 |
3d41 | 1S | 0 | 5 | 4.4302 | 4.4093 |
A sample set of f- and A-values from the reprocessed transitions
are presented in Table 5a in
order. Each transition is
given with complete identification. The level index, Ii, for each energy
level is given next to the J-value for easy linkage to the energy and
f-files. In all calculations where large number of transitions are
used, the reprocessed f- and A-values should replace those in the
complete file (containing 1.46 106 transitions).
For example, the f- and A-values for the first transition
in Table 3 should be replaced
by those for the first transition in Table 5a. The overall replacement
of transitions can be carried out easily using the level energy index set
in Table 4.
The reprocessed transitions are further ordered in terms of their configurations for a completeness check, and to obtain the LS multiplet designations. A partial set is presented in Table 5b (the complete table is available electronically). The completeness depends on the observed set of fine-structure levels since transitions have been reprocessed only for the observed levels. The LS multiplets are useful for various comparisons with existing values where fine-structure transitions can not be resolved.
26 22 | ||||||
0 0 2 1 | ||||||
80 | 236 |
![]() |
![]() |
gfL | gfV |
![]() |
1 | 1 | -5.56210E+00 | -3.14950E+00 | -2.212E-01 | -1.800E-01 | 3.447E+09 |
1 | 2 | -5.56210E+00 | -3.14082E+00 | -5.660E-03 | -4.178E-03 | 8.884E+07 |
1 | 3 | -5.56210E+00 | -3.13088E+00 | -5.894E-02 | -4.843E-02 | 9.328E+08 |
1 | 4 | -5.56210E+00 | -2.99367E+00 | -8.675E-02 | -7.425E-02 | 1.532E+09 |
1 | 5 | -5.56210E+00 | -2.97465E+00 | -4.542E-03 | -4.060E-03 | 8.142E+07 |
1 | 6 | -5.56210E+00 | -2.96345E+00 | -8.619E-05 | -1.086E-04 | 1.558E+06 |
1 | 7 | -5.56210E+00 | -2.93263E+00 | -1.059E-03 | -8.938E-04 | 1.961E+07 |
1 | 8 | -5.56210E+00 | -2.90308E+00 | -1.333E-08 | -3.023E-07 | 2.524E+02 |
1 | 9 | -5.56210E+00 | -2.88417E+00 | -2.099E-06 | -9.150E-07 | 4.031E+04 |
1 | 10 | -5.56210E+00 | -2.87902E+00 | -1.268E-03 | -9.286E-04 | 2.444E+07 |
1 | 11 | -5.56210E+00 | -2.86205E+00 | -4.284E-06 | -4.003E-06 | 8.362E+04 |
1 | 12 | -5.56210E+00 | -2.84777E+00 | -4.484E-06 | -5.049E-06 | 8.845E+04 |
1 | 13 | -5.56210E+00 | -2.83128E+00 | -3.114E-05 | -2.131E-05 | 6.217E+05 |
1 | 14 | -5.56210E+00 | -2.78217E+00 | -2.470E-06 | -1.789E-06 | 5.111E+04 |
1 | 15 | -5.56210E+00 | -2.77047E+00 | -6.248E-05 | -4.283E-05 | 1.304E+06 |
1 | 16 | -5.56210E+00 | -2.65585E+00 | -4.772E-06 | -4.614E-06 | 1.079E+05 |
1 | 17 | -5.56210E+00 | -2.49355E+00 | -4.898E-06 | -5.125E-06 | 1.235E+05 |
1 | 18 | -5.56210E+00 | -2.41413E+00 | -3.274E-07 | -6.115E-07 | 8.688E+03 |
1 | 19 | -5.56210E+00 | -2.33944E+00 | -2.223E-09 | -4.905E-09 | 6.181E+01 |
1 | 20 | -5.56210E+00 | -1.68531E+00 | -1.110E-02 | -7.389E-03 | 4.466E+08 |
1 | 21 | -5.56210E+00 | -1.68346E+00 | -1.821E-02 | -1.320E-02 | 7.334E+08 |
1 | 22 | -5.56210E+00 | -1.67450E+00 | -9.466E-05 | -9.518E-05 | 3.830E+06 |
1 | 23 | -5.56210E+00 | -1.59625E+00 | -5.222E-03 | -3.143E-03 | 2.199E+08 |
1 | 24 | -5.56210E+00 | -1.59532E+00 | -1.810E-03 | -1.229E-03 | 7.624E+07 |
1 | 25 | -5.56210E+00 | -1.58926E+00 | -1.444E-03 | -1.553E-03 | 6.100E+07 |
1 | 26 | -5.56210E+00 | -1.58695E+00 | -2.143E-01 | -1.527E-01 | 9.066E+09 |
1 | 27 | -5.56210E+00 | -1.58282E+00 | -1.247E-01 | -8.966E-02 | 5.285E+09 |
1 | 28 | -5.56210E+00 | -1.56818E+00 | -3.245E-03 | -2.354E-03 | 1.386E+08 |
1 | 29 | -5.56210E+00 | -1.52505E+00 | -1.908E-02 | -1.419E-02 | 8.326E+08 |
1 | 30 | -5.56210E+00 | -1.51857E+00 | -4.315E-03 | -3.201E-03 | 1.889E+08 |
1 | 31 | -5.56210E+00 | -1.51106E+00 | -9.942E-04 | -7.265E-04 | 4.369E+07 |
1 | 32 | -5.56210E+00 | -1.48630E+00 | -1.718E-05 | -1.163E-05 | 7.641E+05 |
1 | 33 | -5.56210E+00 | -1.45506E+00 | -1.579E-04 | -1.075E-04 | 7.130E+06 |
1 | 34 | -5.56210E+00 | -1.45100E+00 | -7.533E-06 | -4.042E-06 | 3.409E+05 |
1 | 35 | -5.56210E+00 | -1.44432E+00 | -5.868E-04 | -3.975E-04 | 2.664E+07 |
1 | 36 | -5.56210E+00 | -1.44049E+00 | -1.021E-01 | -7.036E-02 | 4.642E+09 |
1 | 37 | -5.56210E+00 | -1.43765E+00 | -3.304E-04 | -2.278E-04 | 1.505E+07 |
1 | 38 | -5.56210E+00 | -1.43257E+00 | -3.309E-05 | -2.303E-05 | 1.511E+06 |
1 | 39 | -5.56210E+00 | -1.42555E+00 | -2.467E-07 | -1.329E-07 | 1.130E+04 |
1 | 40 | -5.56210E+00 | -1.41678E+00 | -2.418E-05 | -1.832E-05 | 1.112E+06 |
1 | 41 | -5.56210E+00 | -1.41009E+00 | -1.689E-02 | -1.254E-02 | 7.797E+08 |
1 | 42 | -5.56210E+00 | -1.40208E+00 | -5.592E-05 | -3.657E-05 | 2.591E+06 |
1 | 43 | -5.56210E+00 | -1.40135E+00 | -1.642E-05 | -1.154E-05 | 7.613E+05 |
1 | 44 | -5.56210E+00 | -1.39712E+00 | -1.010E-04 | -6.246E-05 | 4.691E+06 |
1 | 45 | -5.56210E+00 | -1.39057E+00 | -1.312E-05 | -9.621E-06 | 6.115E+05 |
1 | 46 | -5.56210E+00 | -1.37572E+00 | -1.298E-05 | -8.241E-06 | 6.089E+05 |
1 | 47 | -5.56210E+00 | -1.36381E+00 | -1.730E-04 | -1.098E-04 | 8.166E+06 |
1 | 48 | -5.56210E+00 | -1.34841E+00 | -5.225E-07 | -1.695E-06 | 2.484E+04 |
1 | 49 | -5.56210E+00 | -1.33149E+00 | -2.354E-06 | -1.675E-06 | 1.128E+05 |
1 | 50 | -5.56210E+00 | -1.32616E+00 | -5.604E-05 | -3.284E-05 | 2.692E+06 |
Semi-empirical atomic structure calculations have
been carried out be
other workers (Fawcett 1989; Quinet & Hansen 1995).
Present oscillator strengths are compared with available
calculations by Fawcett (1989), the LS coupling R-matrix calculations from
the OP (Butler, TOPbase 1993) and from the IP (Bautista 1996),
for some low lying
transitions. Comparison in Table 5b shows various degrees of
agreement. Present f-values agree very well (within 10%) with those
by Fawcett for some fine-structure transitions while disagree
considerably with the others within the same LS multiplet. For example,
the agreement is good for most of the fine-structure transitions
of 3d4(5D)
d3(4F)4p(5D
,
3d4(5D)
3d3(4P)4p(5P
,
and 3d42(3P)
3d3(4F)4p(3D
while the disagreement is large with other as well as with those of
3d4(5D)
3d3(4F)4p(5F
.
The agreement of the present LS multiplets
with the others is good for strong transitions such as 3d4(5D)
3d3(4F)4p(5F
D
P
,
and 3d42(3P)
3d3(4F)4p(3D
,
but is poor for the weak ones.
The uncertainties of the BPRM transition probabilities for the allowed
transitons are expected to be within 10% for the
strong transitions, and 10-30% for the
weak ones. A measure of
the uncertainty can be obtained from the dispersion of the f-values
in length and velocity forms, which generally indicate deviations from
the "exact'' wavefunctions (albeit with some exceptions).
Figure 1 presents a plot of
values,
length vs. velocity, for the transitions
of Fe V. Though most of the points lie close to the
gfL = gfV line,
significant
dispersion is seen for gf values smaller than 0.01. We should note
that the level of uncertainty may in fact be
less than the dispersion shown in Fig. 1; in the close coupling R-matrix
calculations the length formulation is likely to be more accurate than the
velocity formulaton since the wavefunctions are better represented in the
asymptotic region that dominates the contribution to the length form of
the oscillator strength.
![]() |
nj | level indices |
0 e | 6 | 1,2,3,4,5,6 |
0 o | 6 | 1,2,3,4,6,7 |
1 e | 11 | 1,2,3,4,5,6,7,8,9,10,11 |
1 o | 19 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19 |
2 e | 18 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18 |
2 o | 24 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,20,21,22,23,24,25 |
3 e | 14 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14 |
3 o | 24 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24 |
4 e | 13 | 1,2,3,4,5,6,7,8,9,10,11,12,13 |
4 o | 18 | 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18 |
5 e | 6 | 1,2,3,4,5,6 |
5 o | 11 | 1,2,3,4,5,6,7,8,9,10,11 |
6 e | 3 | 1,2,3 |
6 o | 5 | 1,2,3,4,5 |
7 o | 1 | 1 |
The transition probabilities,
and
,
for 362 forbidden
E2 and M1 transitions are obtained using some semi-empirical
corrections. The
in general are much smaller than the
.
Although
is smaller, there are many cases where one
or the other is negligible. Owing to the widespread use of the only
other previous calculation by
Garstang (1957), it is important to establish the
general level of differences with the previous work. Table 6 gives a
detailed comparison. The agreement between the two sets of data is
generally good with a few noticeable discrepancies.
A partial set of the transition probabilities are given in Table 7 along with the observed wavelengths in microns. The full Table of forbidden transition probabilities is available electronically.
Ci | Cj |
![]() |
![]() |
2Ji+1 | Ii | 2Jj+1 | Ij |
![]() |
![]() |
f |
![]() |
3d4 | -3d3(4F)4p | 5D![]() |
5D![]() |
1 | 1 | 3 | 2 | 5.5132 | 3.1540 | 5.515E-03 | 8.22E+07 |
3d4 | -3d3(4F)4p | 5D![]() |
3D![]() |
1 | 1 | 3 | 3 | 5.5132 | 3.1439 | 5.744E-02 | 8.63E+08 |
3d4 | -3d3(4P)4p | 5D![]() |
5P![]() |
1 | 1 | 3 | 4 | 5.5132 | 3.0195 | 8.420E-02 | 1.40E+09 |
3d4 | -3d3(4P)4p | 5D![]() |
5D![]() |
1 | 1 | 3 | 5 | 5.5132 | 3.0058 | 4.401E-03 | 7.41E+07 |
3d4 | -3d3(4P)4p | 5D![]() |
3P![]() |
1 | 1 | 3 | 6 | 5.5132 | 2.9911 | 8.365E-05 | 1.42E+06 |
3d4 | -3d3(2P)4p | 5D![]() |
3P![]() |
1 | 1 | 3 | 7 | 5.5132 | 2.9439 | 1.035E-03 | 1.83E+07 |
3d4 | -3d3(2D2)4p | 5D![]() |
1P![]() |
1 | 1 | 3 | 8 | 5.5132 | 2.9073 | 1.306E-08 | 2.38E+02 |
3d4 | -3d3(2D2)4p | 5D![]() |
3D![]() |
1 | 1 | 3 | 9 | 5.5132 | 2.8826 | 2.062E-06 | 3.82E+04 |
3d4 | -3d3(2P)4p | 5D![]() |
3D![]() |
1 | 1 | 3 | 10 | 5.5132 | 2.9274 | 1.222E-03 | 2.19E+07 |
3d4 | -3d3(2P)4p | 5D![]() |
3S![]() |
1 | 1 | 3 | 11 | 5.5132 | 2.9052 | 4.138E-06 | 7.54E+04 |
3d4 | -3d3(4P)4p | 5D![]() |
3D![]() |
1 | 1 | 3 | 12 | 5.5132 | 2.8991 | 4.318E-06 | 7.90E+04 |
3d4 | -3d3(2D2)4p | 5D![]() |
3P![]() |
1 | 1 | 3 | 13 | 5.5132 | 2.8652 | 3.020E-05 | 5.67E+05 |
3d4 | -3d3(2P)4p | 5D![]() |
1P![]() |
1 | 1 | 3 | 14 | 5.5132 | 2.8161 | 2.397E-06 | 4.67E+04 |
3d4 | -3d3(4P)4p | 5D![]() |
3S![]() |
1 | 1 | 3 | 15 | 5.5132 | 2.8282 | 6.009E-05 | 1.16E+06 |
3d4 | -3d3(2F)4p | 5D![]() |
3D![]() |
1 | 1 | 3 | 16 | 5.5132 | 2.7003 | 4.619E-06 | 9.78E+04 |
3d4 | -3d3(2D1)4p | 5D![]() |
3D![]() |
1 | 1 | 3 | 17 | 5.5132 | 2.5285 | 4.765E-06 | 1.14E+05 |
3d4 | -3d3(2D1)4p | 5D![]() |
3P![]() |
1 | 1 | 3 | 18 | 5.5132 | 2.4580 | 3.177E-07 | 7.94E+03 |
3d4 | -3d3(2D1)4p | 5D![]() |
1P![]() |
1 | 1 | 3 | 19 | 5.5132 | 2.3924 | 2.152E-09 | 5.61E+01 |
3d42 | -3d3(4F)4p | 3P![]() |
5F![]() |
1 | 2 | 3 | 1 | 5.2940 | 3.1644 | 2.317E-02 | 2.81E+08 |
3d42 | -3d3(4F)4p | 3P![]() |
5D![]() |
1 | 2 | 3 | 2 | 5.2940 | 3.1540 | 1.751E-02 | 2.15E+08 |
3d42 | -3d3(4F)4p | 3P![]() |
3D![]() |
1 | 2 | 3 | 3 | 5.2940 | 3.1439 | 6.702E-02 | 8.29E+08 |
3d42 | -3d3(4P)4p | 3P![]() |
5P![]() |
1 | 2 | 3 | 4 | 5.2940 | 3.0195 | 7.726E-05 | 1.07E+06 |
3d42 | -3d3(4P)4p | 3P![]() |
5D![]() |
1 | 2 | 3 | 5 | 5.2940 | 3.0058 | 2.863E-03 | 4.01E+07 |
3d42 | -3d3(4P)4p | 3P![]() |
3P![]() |
1 | 2 | 3 | 6 | 5.2940 | 2.9911 | 1.907E-02 | 2.71E+08 |
3d42 | -3d3(2P)4p | 3P![]() |
3P![]() |
1 | 2 | 3 | 7 | 5.2940 | 2.9439 | 9.377E-02 | 1.39E+09 |
3d42 | -3d3(2D2)4p | 3P![]() |
1P![]() |
1 | 2 | 3 | 8 | 5.2940 | 2.9073 | 6.430E-03 | 9.81E+07 |
3d42 | -3d3(2D2)4p | 3P![]() |
3D![]() |
1 | 2 | 3 | 9 | 5.2940 | 2.8826 | 7.067E-03 | 1.10E+08 |
3d42 | -3d3(2P)4p | 3P![]() |
3D![]() |
1 | 2 | 3 | 10 | 5.2940 | 2.9274 | 7.538E-02 | 1.13E+09 |
3d42 | -3d3(2P)4p | 3P![]() |
3S![]() |
1 | 2 | 3 | 11 | 5.2940 | 2.9052 | 2.193E-03 | 3.35E+07 |
3d42 | -3d3(4P)4p | 3P![]() |
3D![]() |
1 | 2 | 3 | 12 | 5.2940 | 2.8991 | 3.284E-02 | 5.04E+08 |
3d42 | -3d3(2D2)4p | 3P![]() |
3P![]() |
1 | 2 | 3 | 13 | 5.2940 | 2.8652 | 6.023E-03 | 9.51E+07 |
3d42 | -3d3(2P)4p | 3P![]() |
1P![]() |
1 | 2 | 3 | 14 | 5.2940 | 2.8161 | 1.578E-04 | 2.59E+06 |
3d42 | -3d3(4P)4p | 3P![]() |
3S![]() |
1 | 2 | 3 | 15 | 5.2940 | 2.8282 | 2.772E-04 | 4.51E+06 |
3d42 | -3d3(2F)4p | 3P![]() |
3D![]() |
1 | 2 | 3 | 16 | 5.2940 | 2.7003 | 1.347E-03 | 2.43E+07 |
3d42 | -3d3(2D1)4p | 3P![]() |
3D![]() |
1 | 2 | 3 | 17 | 5.2940 | 2.5285 | 4.641E-03 | 9.50E+07 |
3d42 | -3d3(2D1)4p | 3P![]() |
3P![]() |
1 | 2 | 3 | 18 | 5.2940 | 2.4580 | 3.200E-04 | 6.89E+06 |
3d42 | -3d3(2D1)4p | 3P![]() |
1P![]() |
1 | 2 | 3 | 19 | 5.2940 | 2.3924 | 1.102E-05 | 2.48E+05 |
3d42 | -3d3(4F)4p | 1S![]() |
5F![]() |
1 | 3 | 3 | 1 | 5.1520 | 3.1644 | 7.493E-06 | 7.93E+04 |
3d42 | -3d3(4F)4p | 1S![]() |
5D![]() |
1 | 3 | 3 | 2 | 5.1520 | 3.1540 | 7.672E-06 | 8.20E+04 |
3d42 | -3d3(4F)4p | 1S![]() |
3D![]() |
1 | 3 | 3 | 3 | 5.1520 | 3.1439 | 2.529E-05 | 2.73E+05 |
3d42 | -3d3(4P)4p | 1S![]() |
5P![]() |
1 | 3 | 3 | 4 | 5.1520 | 3.0195 | 1.024E-05 | 1.25E+05 |
3d42 | -3d3(4P)4p | 1S![]() |
5D![]() |
1 | 3 | 3 | 5 | 5.1520 | 3.0058 | 1.932E-04 | 2.38E+06 |
3d42 | -3d3(4P)4p | 1S![]() |
3P![]() |
1 | 3 | 3 | 6 | 5.1520 | 2.9911 | 2.404E-05 | 3.01E+05 |
3d42 | -3d3(2P)4p | 1S![]() |
3P![]() |
1 | 3 | 3 | 7 | 5.1520 | 2.9439 | 7.035E-03 | 9.18E+07 |
3d42 | -3d3(2D2)4p | 1S![]() |
1P![]() |
1 | 3 | 3 | 8 | 5.1520 | 2.9073 | 8.021E-03 | 1.08E+08 |
3d42 | -3d3(2D2)4p | 1S![]() |
3D![]() |
1 | 3 | 3 | 9 | 5.1520 | 2.8826 | 2.263E-01 | 3.12E+09 |
3d42 | -3d3(2P)4p | 1S![]() |
3D![]() |
1 | 3 | 3 | 10 | 5.1520 | 2.9274 | 1.305E-03 | 1.73E+07 |
3d42 | -3d3(2P)4p | 1S![]() |
3S![]() |
1 | 3 | 3 | 11 | 5.1520 | 2.9052 | 1.968E-04 | 2.66E+06 |
3d42 | -3d3(4P)4p | 1S![]() |
3D![]() |
1 | 3 | 3 | 12 | 5.1520 | 2.8991 | 2.048E-03 | 2.78E+07 |
3d42 | -3d3(2D2)4p | 1S![]() |
3P![]() |
1 | 3 | 3 | 13 | 5.1520 | 2.8652 | 1.148E-02 | 1.61E+08 |
3d42 | -3d3(2P)4p | 1S![]() |
1P![]() |
1 | 3 | 3 | 14 | 5.1520 | 2.8161 | 7.864E-02 | 1.15E+09 |
3d42 | -3d3(4P)4p | 1S![]() |
3S![]() |
1 | 3 | 3 | 15 | 5.1520 | 2.8282 | 2.714E-02 | 3.92E+08 |
3d42 | -3d3(2F)4p | 1S![]() |
3D![]() |
1 | 3 | 3 | 16 | 5.1520 | 2.7003 | 5.453E-07 | 8.78E+03 |
3d42 | -3d3(2D1)4p | 1S![]() |
3D![]() |
1 | 3 | 3 | 17 | 5.1520 | 2.5285 | 6.569E-05 | 1.21E+06 |
3d42 | -3d3(2D1)4p | 1S![]() |
3P![]() |
1 | 3 | 3 | 18 | 5.1520 | 2.4580 | 2.050E-07 | 3.98E+03 |
3d42 | -3d3(2D1)4p | 1S![]() |
1P![]() |
1 | 3 | 3 | 19 | 5.1520 | 2.3924 | 2.421E-04 | 4.94E+06 |
3d41 | -3d3(4F)4p | 3P![]() |
5F![]() |
1 | 4 | 3 | 1 | 4.9352 | 3.1644 | 9.362E-05 | 7.86E+05 |
3d41 | -3d3(4F)4p | 3P![]() |
5D![]() |
1 | 4 | 3 | 2 | 4.9352 | 3.1540 | 2.852E-05 | 2.42E+05 |
3d41 | -3d3(4F)4p | 3P![]() |
3D![]() |
1 | 4 | 3 | 3 | 4.9352 | 3.1439 | 1.131E-04 | 9.72E+05 |
3d41 | -3d3(4P)4p | 3P![]() |
5P![]() |
1 | 4 | 3 | 4 | 4.9352 | 3.0195 | 4.206E-04 | 4.13E+06 |
3d41 | -3d3(4P)4p | 3P![]() |
5D![]() |
1 | 4 | 3 | 5 | 4.9352 | 3.0058 | 1.295E-02 | 1.29E+08 |
3d41 | -3d3(4P)4p | 3P![]() |
3P![]() |
1 | 4 | 3 | 6 | 4.9352 | 2.9911 | 1.009E-02 | 1.02E+08 |
3d41 | -3d3(2P)4p | 3P![]() |
3P![]() |
1 | 4 | 3 | 7 | 4.9352 | 2.9439 | 7.813E-03 | 8.29E+07 |
3d41 | -3d3(2D2)4p | 3P![]() |
1P![]() |
1 | 4 | 3 | 8 | 4.9352 | 2.9073 | 3.255E-04 | 3.58E+06 |
3d41 | -3d3(2D2)4p | 3P![]() |
3D![]() |
1 | 4 | 3 | 9 | 4.9352 | 2.8826 | 3.644E-04 | 4.11E+06 |
3d41 | -3d3(2P)4p | 3P![]() |
3D![]() |
1 | 4 | 3 | 10 | 4.9352 | 2.9274 | 2.974E-03 | 3.21E+07 |
3d41 | -3d3(2P)4p | 3P![]() |
3S![]() |
1 | 4 | 3 | 11 | 4.9352 | 2.9052 | 2.856E-04 | 3.15E+06 |
3d41 | -3d3(4P)4p | 3P![]() |
3D![]() |
1 | 4 | 3 | 12 | 4.9352 | 2.8991 | 4.236E-04 | 4.70E+06 |
3d41 | -3d3(2D2)4p | 3P![]() |
3P![]() |
1 | 4 | 3 | 13 | 4.9352 | 2.8652 | 5.201E-02 | 5.97E+08 |
3d41 | -3d3(2P)4p | 3P![]() |
1P![]() |
1 | 4 | 3 | 14 | 4.9352 | 2.8161 | 1.028E-02 | 1.24E+08 |
3d41 | -3d3(4P)4p | 3P![]() |
3S![]() |
1 | 4 | 3 | 15 | 4.9352 | 2.8282 | 4.824E-02 | 5.73E+08 |
3d41 | -3d3(2F)4p | 3P![]() |
3D![]() |
1 | 4 | 3 | 16 | 4.9352 | 2.7003 | 1.648E-01 | 2.20E+09 |
3d41 | -3d3(2D1)4p | 3P![]() |
3D![]() |
1 | 4 | 3 | 17 | 4.9352 | 2.5285 | 2.144E-08 | 3.33E+02 |
3d41 | -3d3(2D1)4p | 3P![]() |
3P![]() |
1 | 4 | 3 | 18 | 4.9352 | 2.4580 | 4.867E-02 | 8.00E+08 |
3d41 | -3d3(2D1)4p | 3P![]() |
1P![]() |
1 | 4 | 3 | 19 | 4.9352 | 2.3924 | 4.875E-05 | 8.44E+05 |
3d41 | -3d3(4F)4p | 1S![]() |
5F![]() |
1 | 5 | 3 | 1 | 4.4093 | 3.1644 | 8.262E-08 | 3.43E+02 |
3d41 | -3d3(4F)4p | 1S![]() |
5D![]() |
1 | 5 | 3 | 2 | 4.4093 | 3.1540 | 3.663E-08 | 1.55E+02 |
3d41 | -3d3(4F)4p | 1S![]() |
3D![]() |
1 | 5 | 3 | 3 | 4.4093 | 3.1439 | 1.626E-07 | 6.97E+02 |
3d41 | -3d3(4P)4p | 1S![]() |
5P![]() |
1 | 5 | 3 | 4 | 4.4093 | 3.0195 | 8.343E-08 | 4.31E+02 |
3d41 | -3d3(4P)4p | 1S![]() |
5D![]() |
1 | 5 | 3 | 5 | 4.4093 | 3.0058 | 1.509E-09 | 7.96E+00 |
3d41 | -3d3(4P)4p | 1S![]() |
3P![]() |
1 | 5 | 3 | 6 | 4.4093 | 2.9911 | 2.573E-07 | 1.39E+03 |
3d41 | -3d3(2P)4p | 1S![]() |
3P![]() |
1 | 5 | 3 | 7 | 4.4093 | 2.9439 | 1.238E-05 | 7.12E+04 |
3d41 | -3d3(2D2)4p | 1S![]() |
1P![]() |
1 | 5 | 3 | 8 | 4.4093 | 2.9073 | 2.067E-05 | 1.25E+05 |
3d41 | -3d3(2D2)4p | 1S![]() |
3D![]() |
1 | 5 | 3 | 9 | 4.4093 | 2.8826 | 3.442E-04 | 2.15E+06 |
3d41 | -3d3(2P)4p | 1S![]() |
3D![]() |
1 | 5 | 3 | 10 | 4.4093 | 2.9274 | 1.868E-05 | 1.10E+05 |
Ci | Cj |
![]() |
![]() |
2Ji+1 | Ii | 2Jj+1 | Ij |
![]() |
![]() |
3d4 | -3d3(4F)4p | 5D0 | 5F1 | 1 | 1 | 3 | 1 | 0.2154 | 0.163a |
3d4 | -3d3(4F)4p | 5D0 | 5F1 | 3 | 1 | 3 | 1 | 3.790E-04 | |
3d4 | -3d3(4F)4p | 5D0 | 5F1 | 3 | 1 | 5 | 3 | 0.00136 | |
3d4 | -3d3(4F)4p | 5D0 | 5F1 | 5 | 1 | 3 | 1 | 0.04617 | 0.0126a |
3d4 | -3d3(4F)4p | 5D0 | 5F1 | 5 | 1 | 5 | 3 | 0.05967 | 0.0596a |
3d4 | -3d3(4F)4p | 5D0 | 5F1 | 5 | 1 | 7 | 3 | 0.01462 | 0.0138a |
3d4 | -3d3(4F)4p | 5D0 | 5F1 | 7 | 1 | 5 | 3 | 0.006895 | 0.0274a |
3d4 | -3d3(4F)4p | 5D0 | 5F1 | 7 | 1 | 7 | 3 | 0.05889 | 0.0544a |
3d4 | -3d3(4F)4p | 5D0 | 5F1 | 9 | 1 | 7 | 3 | 0.001966 | 0.00756a |
3d4 | -3d3(4F)4p | 5D0 | 5F1 | 7 | 1 | 9 | 3 | 0.03262 | 0.0414a |
3d4 | -3d3(4F)4p | 5D0 | 5F1 | 9 | 1 | 9 | 3 | 0.05139 | 0.03a |
3d4 | -3d3(4F)4p | 5D0 | 5F1 | 9 | 1 | 11 | 2 | 0.07548 | 0.0686a |
3d4 | -3d3(4F)4p | 5D0 | 5F1 | 25 | 35 | 0.107 | 0.0804b,0.0915c | ||
3d4 | -3d3(4F)4p | 5D0 | 5D1 | 1 | 1 | 3 | 2 | 0.00551 | 0.041a |
3d4 | -3d3(4F)4p | 5D0 | 5D1 | 3 | 1 | 1 | 1 | 0.06255 | 0.0607a |
3d4 | -3d3(4F)4p | 5D0 | 5D1 | 3 | 1 | 3 | 2 | 0.03888 | 0.0343a |
3d4 | -3d3(4F)4p | 5D0 | 5D1 | 3 | 1 | 5 | 2 | 0.1360 | 0.1257a |
3d4 | -3d3(4F)4p | 5D0 | 5D1 | 5 | 1 | 3 | 2 | 0.01704 | 0.0532a |
3d4 | -3d3(4F)4p | 5D0 | 5D1 | 5 | 1 | 5 | 2 | 0.01372 | 0.0092a |
3d4 | -3d3(4F)4p | 5D0 | 5D1 | 5 | 1 | 7 | 2 | 0.1087 | 0.1006a |
3d4 | -3d3(4F)4p | 5D0 | 5D1 | 7 | 1 | 5 | 2 | 0.04155 | 0.0247a |
3d4 | -3d3(4F)4p | 5D0 | 5D1 | 7 | 1 | 7 | 2 | 0.04936 | 0.0517a |
3d4 | -3d3(4F)4p | 5D0 | 5D1 | 9 | 1 | 7 | 2 | 0.02644 | 0.0222a |
3d4 | -3d3(4F)4p | 5D0 | 5D1 | 7 | 1 | 9 | 2 | 0.07311 | 0.0588a |
3d4 | -3d3(4F)4p | 5D0 | 5D1 | 9 | 1 | 9 | 2 | 0.1168 | 0.130a |
3d4 | -3d3(4F)4p | 5D0 | 5D1 | 25 | 25 | 0.1541 | 0.1708b,0.192c | ||
3d4 | -3d3(4P)4p | 5D0 | 5P1 | 1 | 1 | 3 | 4 | 0.08420 | 0.076a |
3d4 | -3d3(4P)4p | 5D0 | 5P1 | 3 | 1 | 3 | 4 | 0.06281 | 0.057a |
3d4 | -3d3(4P)4p | 5D0 | 5P1 | 3 | 1 | 5 | 6 | 0.02114 | 0.019a |
3d4 | -3d3(4P)4p | 5D0 | 5P1 | 5 | 1 | 3 | 4 | 0.02926 | 0.0266a |
3d4 | -3d3(4P)4p | 5D0 | 5P1 | 5 | 1 | 5 | 6 | 0.04831 | 0.0442a |
3d4 | -3d3(4P)4p | 5D0 | 5P1 | 5 | 1 | 7 | 7 | 0.00622 | 0.0054a |
3d4 | -3d3(4P)4p | 5D0 | 5P1 | 7 | 1 | 5 | 6 | 0.05555 | 0.0499a |
3d4 | -3d3(4P)4p | 5D0 | 5P1 | 7 | 1 | 7 | 7 | 0.03105 | 0.0264a |
3d4 | -3d3(4P)4p | 5D0 | 5P1 | 9 | 1 | 7 | 7 | 0.08782 | 0.0758a |
3d4 | -3d3(4P)4p | 5D0 | 5P1 | 25 | 15 | 0.0861 | 0.076b,0.0893c | ||
3d4 | -3d3(4P)4p | 5D0 | 5D1 | 1 | 1 | 3 | 5 | 4.401E-03 | |
3d4 | -3d3(4P)4p | 5D0 | 5D1 | 3 | 1 | 1 | 2 | 4.902E-04 | |
3d4 | -3d3(4P)4p | 5D0 | 5D1 | 3 | 1 | 3 | 5 | 7.201E-04 | |
3d4 | -3d3(4P)4p | 5D0 | 5D1 | 3 | 1 | 5 | 7 | 2.402E-03 | |
3d4 | -3d3(4P)4p | 5D0 | 5D1 | 5 | 1 | 3 | 5 | 1.502E-03 | |
3d4 | -3d3(4P)4p | 5D0 | 5D1 | 5 | 1 | 5 | 7 | 2.248E-03 | |
3d4 | -3d3(4P)4p | 5D0 | 5D1 | 5 | 1 | 7 | 8 | 1.474E-03 | |
3d4 | -3d3(4P)4p | 5D0 | 5D1 | 7 | 1 | 5 | 7 | 2.675E-03 | |
3d4 | -3d3(4P)4p | 5D0 | 5D1 | 7 | 1 | 7 | 8 | 1.048E-03 | |
3d4 | -3d3(4P)4p | 5D0 | 5D1 | 9 | 1 | 7 | 8 | 2.846E-06 | |
3d4 | -3d3(4P)4p | 5D0 | 5D1 | 7 | 1 | 9 | 7 | 1.408E-03 | |
3d4 | -3d3(4P)4p | 5D0 | 5D1 | 9 | 1 | 9 | 7 | 4.558E-03 | |
3d4 | -3d3(4P)4p | 5D0 | 5D1 | 25 | 25 | 0.0047 | 0.00436b,0.00564c | ||
3d4 2 | -3d3(4F)4p | 3P0 | 3D1 | 1 | 2 | 3 | 3 | 6.702E-02 | 0.061a |
3d4 2 | -3d3(4F)4p | 3P0 | 3D1 | 3 | 2 | 3 | 3 | 1.585E-02 | 0.0147a |
3d4 2 | -3d3(4F)4p | 3P0 | 3D1 | 3 | 2 | 5 | 4 | 6.279E-02 | 0.057a |
3d4 2 | -3d3(4F)4p | 3P0 | 3D1 | 5 | 2 | 3 | 3 | 6.685E-04 | |
3d4 2 | -3d3(4F)4p | 3P0 | 3D1 | 5 | 2 | 5 | 4 | 1.144E-02 | 0.011a |
3d4 2 | -3d3(4F)4p | 3P0 | 3D1 | 5 | 2 | 7 | 4 | 7.753E-02 | 0.0756a |
3d4 2 | -3d3(4F)4p | 3P0 | 3D1 | 9 | 15 | 0.0833 | 0.0973b,0.106c | ||
3d4 2 | -3d3(4P)4p | 3P0 | 3P1 | 1 | 2 | 3 | 6 | 1.907E-02 | |
3d4 2 | -3d3(4P)4p | 3P0 | 3P1 | 3 | 2 | 1 | 3 | 3.593E-03 | |
3d4 2 | -3d3(4P)4p | 3P0 | 3P1 | 3 | 2 | 3 | 6 | 3.409E-03 | |
3d4 2 | -3d3(4P)4p | 3P0 | 3P1 | 3 | 2 | 5 | 8 | 3.037E-03 | |
3d4 2 | -3d3(4P)4p | 3P0 | 3P1 | 5 | 2 | 3 | 6 | 3.742E-03 | |
3d4 2 | -3d3(4P)4p | 3P0 | 3P1 | 5 | 2 | 5 | 8 | 2.134E-03 | |
3d4 2 | -3d3(4P)4p | 3P0 | 3P1 | 9 | 9 | 0.0087 | 0.00542b,0.0127c | ||
3d4 2 | -3d3(2P)4p | 3P0 | 3S1 | 1 | 2 | 3 | 11 | 2.193E-03 | |
3d4 2 | -3d3(2P)4p | 3P0 | 3S1 | 3 | 2 | 3 | 11 | 5.853E-03 | |
3d4 2 | -3d3(2P)4p | 3P0 | 3S1 | 5 | 2 | 3 | 11 | 3.582E-04 | |
3d4 2 | -3d3(2P)4p | 3P0 | 3S1 | 9 | 3 | 0.00239 | 0.00142b,0.056c | ||
aFawcett (1989), bButler, cBautista (1996). |
Transition |
![]() |
![]() |
![]() |
![]() |
![]() |
|
5D1 | 3P20 | 4181.8 | 142.1 | 24055.4 | 1.30E+00 | 1.39E+00 |
5D0 | 3P21 | 4004.3 | 0.0 | 24972.9 | 1.30E-01 | 1.23E-01 |
5D2 | 3P21 | 4072.4 | 417.3 | 24972.9 | 1.10E+00 | 1.07E+00 |
5D1 | 3P22 | 3798.5 | 142.1 | 26468.3 | 3.60E-02 | 3.54E-02 |
5D3 | 3P22 | 3896.3 | 803.1 | 26468.3 | 7.10E-01 | 7.08E-01 |
5D4 | 3H4 | 4228.4 | 1282.8 | 24932.5 | 1.10E-03 | 4.34E-03 |
5D1 | 3F22 | 3756.8 | 142.1 | 26760.7 | 1.00E-01 | 1.04E-01 |
5D2 | 3F22 | 3796.0 | 417.3 | 26760.7 | 2.00E-01 | 2.01E-01 |
5D3 | 3F22 | 3852.4 | 803.1 | 26760.7 | 4.70E-02 | 5.25E-02 |
5D2 | 3F23 | 3784.3 | 417.3 | 26842.3 | 1.60E-01 | 1.78E-01 |
5D3 | 3F23 | 3840.4 | 803.1 | 26842.3 | 4.00E-01 | 4.66E-01 |
5D4 | 3F23 | 3912.4 | 1282.8 | 26842.3 | 6.60E-02 | 6.43E-02 |
5D3 | 3F24 | 3821.0 | 803.1 | 26974.0 | 1.60E-01 | 1.66E-01 |
5D4 | 3F24 | 3892.4 | 1282.8 | 26974.0 | 7.40E-01 | 7.92E-01 |
5D2 | 3G3 | 3401.4 | 417.3 | 29817.1 | 7.00E-03 | 6.76E-03 |
5D3 | 3G3 | 3446.6 | 803.1 | 29817.1 | 1.70E-02 | 1.62E-02 |
5D4 | 3G3 | 3504.6 | 1282.8 | 29817.1 | 2.60E-03 | 2.32E-03 |
5D3 | 3G4 | 3407.9 | 803.1 | 30147.0 | 7.80E-03 | 7.20E-03 |
5D4 | 3G4 | 3464.5 | 1282.8 | 30147.0 | 3.20E-02 | 2.58E-02 |
5D2 | 3D3 | 2761.5 | 417.3 | 36630.1 | 9.70E-02 | 9.76E-02 |
5D3 | 3D3 | 2791.2 | 803.1 | 36630.1 | 8.90E-02 | 9.15E-02 |
5D4 | 3D3 | 2829.1 | 1282.8 | 36630.1 | 3.70E-01 | 3.80E-01 |
5D1 | 3D2 | 2731.0 | 142.1 | 36758.5 | 2.00E-01 | 1.96E-01 |
5D2 | 3D2 | 2751.7 | 417.3 | 36758.5 | 1.80E-01 | 1.60E-01 |
5D3 | 3D2 | 2781.2 | 803.1 | 36758.5 | 1.10E-01 | 1.05E-01 |
5D0 | 3D1 | 2708.2 | 0.0 | 36925.4 | 2.20E-01 | 2.37E-01 |
5D1 | 3D1 | 2718.6 | 142.1 | 36925.4 | 1.90E-01 | 2.11E-01 |
5D2 | 3D1 | 2739.1 | 417.3 | 36925.4 | 1.90E-03 | 2.73E-03 |
3H4 | 3G3 | 20472.5 | 24932.5 | 29817.1 | 3.60E-02 | 3.98E-02 |
3H4 | 3G4 | 19177.3 | 24932.5 | 30147.0 | 3.30E-02 | 3.33E-02 |
3H4 | 3G5 | 18189.8 | 24932.5 | 30430.1 | 1.20E-03 | 8.77E-04 |
3H5 | 3G5 | 19215.2 | 25225.9 | 30430.1 | 4.10E-02 | 4.40E-02 |
3H6 | 3G5 | 20401.5 | 25528.5 | 30430.1 | 4.10E-02 | 4.39E-02 |
3H5 | 1I6 | 8139.5 | 25225.9 | 37511.7 | 1.10E-01 | 1.16E-01 |
3H6 | 1I6 | 8345.0 | 25528.5 | 37511.7 | 1.40E-01 | 1.52E-01 |
3F22 | 3G3 | 32718.2 | 26760.7 | 29817.1 | 3.00E-02 | 3.03E-02 |
3F23 | 3G3 | 33615.7 | 26842.3 | 29817.1 | 3.70E-02 | 3.76E-02 |
3F24 | 3G4 | 31515.9 | 26974.0 | 30147.0 | 2.70E-02 | 2.80E-02 |
3F24 | 3G5 | 28934.3 | 26974.0 | 30430.1 | 3.70E-02 | 3.74E-02 |
3F23 | 3D3 | 10216.8 | 26842.3 | 36630.1 | 6.40E-03 | 5.97E-03 |
3F24 | 3D3 | 10356.1 | 26974.0 | 36630.1 | 6.90E-03 | 6.37E-03 |
3F22 | 3D2 | 10002.2 | 26760.7 | 36758.5 | 1.70E-02 | 1.44E-02 |
3F23 | 3D2 | 10084.5 | 26842.3 | 36758.5 | 1.60E-03 | 1.21E-03 |
3F22 | 3D1 | 9838.0 | 26760.7 | 36925.4 | 1.40E-02 | 1.36E-02 |
3F22 | 1D22 | 5120.2 | 26760.7 | 46291.2 | 2.10E-01 | 2.28E-01 |
3F23 | 1D22 | 5141.7 | 26842.3 | 46291.2 | 4.20E-01 | 4.48E-01 |
3G3 | 1F3 | 4363.8 | 29817.1 | 52732.7 | 1.20E-01 | 1.23E-01 |
3G4 | 1F3 | 4427.6 | 30147.0 | 52732.7 | 1.70E-01 | 1.70E-01 |
3D3 | 1D22 | 10350.8 | 36630.1 | 46291.2 | 9.00E-02 | 1.08E-01 |
3D2 | 1D22 | 10490.2 | 36758.5 | 46291.2 | 1.70E-02 | 2.00E-02 |
3D1 | 1D22 | 10677.1 | 36925.4 | 46291.2 | 8.00E-02 | 9.60E-02 |
3D3 | 1F3 | 6210.2 | 36630.1 | 52732.7 | 1.50E-01 | 1.65E-01 |
3D2 | 1F3 | 6260.1 | 36758.5 | 52732.7 | 7.00E-02 | 7.41E-02 |
Ci | Cj |
![]() |
![]() |
Ji | Jj |
![]() |
![]() |
![]() |
![]() |
![]() |
3d4 | 3d4 | 5D | 5D | 0 | 1 | 703729.8 | 0.0 | 142.1 | 1.55E-04 | 0.00E+00 |
3d4 | 3d4 | 5D | 5D | 0 | 2 | 239635.8 | 0.0 | 417.3 | 0.00E+00 | 1.17E-10 |
3d4 | 3d4 | 5D | 5D | 1 | 2 | 363372.1 | 142.1 | 417.3 | 1.18E-03 | 1.10E-11 |
3d4 | 3d4 | 5D | 5D | 1 | 3 | 151285.9 | 142.1 | 803.1 | 0.00E+00 | 1.00E-09 |
3d4 | 3d4 | 5D | 5D | 2 | 3 | 259201.7 | 417.3 | 803.1 | 2.65E-03 | 1.29E-10 |
3d4 | 3d4 | 5D | 5D | 2 | 4 | 115540.2 | 417.3 | 1282.8 | 0.00E+00 | 1.84E-09 |
3d4 | 3d4 | 5D | 5D | 3 | 4 | 208463.6 | 803.1 | 1282.8 | 2.98E-03 | 4.19E-10 |
3d4 | 3d4 | 5D | 3P2 | 2 | 0 | 4230.5 | 417.3 | 24055.4 | 0.00E+00 | 4.75E-04 |
3d4 | 3d4 | 5D | 3P2 | 1 | 1 | 4027.3 | 142.1 | 24972.9 | 8.72E-05 | 2.01E-04 |
3d4 | 3d4 | 5D | 3P2 | 3 | 1 | 4137.4 | 803.1 | 24972.9 | 0.00E+00 | 7.02E-05 |
3d4 | 3d4 | 5D | 3P2 | 0 | 2 | 3778.1 | 0.0 | 26468.3 | 0.00E+00 | 6.83E-05 |
3d4 | 3d4 | 5D | 3P2 | 2 | 2 | 3838.6 | 417.3 | 26468.3 | 3.52E-05 | 2.00E-05 |
3d4 | 3d4 | 5D | 3P2 | 4 | 2 | 3970.5 | 1282.8 | 26468.3 | 0.00E+00 | 2.04E-05 |
3d4 | 3d4 | 5D | 3H | 2 | 4 | 4079.1 | 417.3 | 24932.5 | 0.00E+00 | 1.44E-07 |
3d4 | 3d4 | 5D | 3H | 3 | 4 | 4144.3 | 803.1 | 24932.5 | 8.32E-04 | 1.15E-09 |
3d4 | 3d4 | 5D | 3H | 3 | 5 | 4094.5 | 803.1 | 25225.9 | 0.00E+00 | 2.15E-06 |
3d4 | 3d4 | 5D | 3H | 4 | 5 | 4176.6 | 1282.8 | 25225.9 | 1.25E-05 | 1.09E-07 |
3d4 | 3d4 | 5D | 3H | 4 | 6 | 4124.4 | 1282.8 | 25528.5 | 0.00E+00 | 1.67E-05 |
3d4 | 3d4 | 5D | 3F2 | 0 | 2 | 3736.8 | 0.0 | 26760.7 | 0.00E+00 | 3.67E-05 |
3d4 | 3d4 | 5D | 3F2 | 4 | 2 | 3925.0 | 1282.8 | 26760.7 | 0.00E+00 | 2.54E-06 |
3d4 | 3d4 | 5D | 3F2 | 1 | 3 | 3745.3 | 142.1 | 26842.3 | 0.00E+00 | 1.28E-05 |
3d4 | 3d4 | 5D | 3F2 | 2 | 4 | 3765.5 | 417.3 | 26974.0 | 0.00E+00 | 1.14E-06 |
3d4 | 3d4 | 5D | 3G | 1 | 3 | 3369.8 | 142.1 | 29817.1 | 0.00E+00 | 5.37E-05 |
3d4 | 3d4 | 5D | 3G | 2 | 4 | 3363.6 | 417.3 | 30147.0 | 0.00E+00 | 8.67E-05 |
3d4 | 3d4 | 5D | 3G | 3 | 5 | 3375.3 | 803.1 | 30430.1 | 0.00E+00 | 8.86E-05 |
3d4 | 3d4 | 5D | 3G | 4 | 5 | 3430.8 | 1282.8 | 30430.1 | 5.93E-04 | 2.13E-04 |
3d4 | 3d3(4F) | 5D | 5F | 0 | 1 | 536.4 | 0.0 | 186433.6 | 6.97E-05 | 0.00E+00 |
3d4 | 3d3(4F) | 5D | 5F | 1 | 1 | 536.8 | 142.1 | 186433.6 | 1.59E-04 | 1.54E+04 |
3d4 | 3d3(4F) | 5D | 5F | 2 | 1 | 537.6 | 417.3 | 186433.6 | 6.48E-05 | 1.09E+04 |
3d4 | 3d3(4F) | 5D | 5F | 3 | 1 | 538.7 | 803.1 | 186433.6 | 0.00E+00 | 1.09E+03 |
3d4 | 3d3(4F) | 5D | 5F | 0 | 2 | 535.5 | 0.0 | 186725.5 | 0.00E+00 | 7.79E+03 |
3d4 | 3d3(4F) | 5D | 5F | 1 | 2 | 536.0 | 142.1 | 186725.5 | 1.77E-05 | 1.90E-04 |
3d4 | 3d3(4F) | 5D | 5F | 2 | 2 | 536.7 | 417.3 | 186725.5 | 1.26E-04 | 1.26E+04 |
3d4 | 3d3(4F) | 5D | 5F | 3 | 2 | 537.9 | 803.1 | 186725.5 | 5.30E-05 | 6.83E+03 |
3d4 | 3d3(4F) | 5D | 5F | 4 | 2 | 539.3 | 1282.8 | 186725.5 | 0.00E+00 | 3.51E+02 |
3d4 | 3d3(4F) | 5D | 5F | 1 | 3 | 534.7 | 142.1 | 187157.5 | 0.00E+00 | 1.01E+04 |
3d4 | 3d3(4F) | 5D | 5F | 2 | 3 | 535.5 | 417.3 | 187157.5 | 4.29E-07 | 1.19E+03 |
3d4 | 3d3(4F) | 5D | 5F | 3 | 3 | 536.6 | 803.1 | 187157.5 | 8.40E-05 | 1.35E+04 |
3d4 | 3d3(4F) | 5D | 5F | 4 | 3 | 538.0 | 1282.8 | 187157.5 | 2.36E-05 | 2.94E+03 |
3d4 | 3d3(4F) | 5D | 5F | 2 | 4 | 533.9 | 417.3 | 187719.0 | 0.00E+00 | 1.01E+04 |
3d4 | 3d3(4F) | 5D | 5F | 3 | 4 | 535.0 | 803.1 | 187719.0 | 3.95E-05 | 6.97E+03 |
3d4 | 3d3(4F) | 5D | 5F | 4 | 4 | 536.4 | 1282.8 | 187719.0 | 4.06E-05 | 1.09E+04 |
3d4 | 3d3(4F) | 5D | 5F | 3 | 5 | 533.1 | 803.1 | 188395.3 | 0.00E+00 | 7.09E+03 |
3d4 | 3d3(4F) | 5D | 5F | 4 | 5 | 534.4 | 1282.8 | 188395.3 | 1.56E-04 | 2.10E+04 |
3d4 | 3d4 | 3P2 | 3P2 | 0 | 1 | 108991.8 | 24055.4 | 24972.9 | 1.38E-02 | 0.00E+00 |
3d4 | 3d4 | 3P2 | 3P2 | 0 | 2 | 41443.9 | 24055.4 | 26468.3 | 0.00E+00 | 8.70E-09 |
3d4 | 3d4 | 3P2 | 3P2 | 1 | 2 | 66871.7 | 24972.9 | 26468.3 | 4.52E-02 | 1.97E-09 |
3d4 | 3d4 | 3P2 | 3F2 | 0 | 2 | 36964.5 | 24055.4 | 26760.7 | 0.00E+00 | 3.47E-07 |
3d4 | 3d4 | 3P2 | 3F2 | 1 | 2 | 55934.7 | 24972.9 | 26760.7 | 2.22E-05 | 4.87E-08 |
3d4 | 3d4 | 3P2 | 3F2 | 2 | 2 | 341997.3 | 26468.3 | 26760.7 | 7.92E-07 | 1.19E-12 |
3d4 | 3d4 | 3P2 | 3F2 | 1 | 3 | 53493.1 | 24972.9 | 26842.3 | 0.00E+00 | 6.78E-08 |
3d4 | 3d4 | 3P2 | 3F2 | 2 | 3 | 267379.7 | 26468.3 | 26842.3 | 3.55E-07 | 1.48E-11 |
3d4 | 3d4 | 3P2 | 3F2 | 2 | 4 | 197745.7 | 26468.3 | 26974.0 | 0.00E+00 | 1.38E-10 |
3d4 | 3d4 | 3P2 | 3G | 1 | 3 | 20643.2 | 24972.9 | 29817.1 | 0.00E+00 | 7.16E-08 |
3d4 | 3d4 | 3P2 | 3G | 2 | 3 | 29861.4 | 26468.3 | 29817.1 | 1.16E-05 | 1.36E-08 |
3d4 | 3d4 | 3P2 | 3G | 2 | 4 | 27183.5 | 26468.3 | 30147.0 | 0.00E+00 | 1.00E-08 |
3d4 | 3d3(4F) | 3P2 | 5F | 0 | 1 | 615.8 | 24055.4 | 186433.6 | 6.41E-08 | 0.00E+00 |
3d4 | 3d3(4F) | 3P2 | 5F | 1 | 1 | 619.3 | 24972.9 | 186433.6 | 6.00E-07 | 1.12E+00 |
3d4 | 3d3(4F) | 3P2 | 5F | 2 | 1 | 625.1 | 26468.3 | 186433.6 | 9.64E-08 | 3.48E-01 |
3d4 | 3d3(4F) | 3P2 | 5F | 0 | 2 | 614.7 | 24055.4 | 186725.5 | 0.00E+00 | 2.06E-01 |
Ci | Cj |
![]() |
![]() |
Ji | Jj |
![]() |
![]() |
![]() |
![]() |
![]() |
3d4 |
3d3(4F) | 3P2 | 5F | 1 | 2 | 618.2 | 24972.9 | 186725.5 | 1.68E-07 | 1.63E-01 |
3d4 | 3d3(4F) | 3P2 | 5F | 2 | 2 | 624.0 | 26468.3 | 186725.5 | 3.12E-07 | 6.09E-01 |
3d4 | 3d3(4F) | 3P2 | 5F | 1 | 3 | 616.6 | 24972.9 | 187157.5 | 0.00E+00 | 4.94E-02 |
3d4 | 3d3(4F) | 3P2 | 5F | 2 | 3 | 622.3 | 26468.3 | 187157.5 | 6.44E-07 | 3.56E-01 |
3d4 | 3d3(4F) | 3P2 | 5F | 2 | 4 | 620.2 | 26468.3 | 187719.0 | 0.00E+00 | 5.32E-03 |
3d4 | 3d4 | 3H | 3P2 | 4 | 2 | 65112.6 | 24932.5 | 26468.3 | 0.00E+00 | 6.81E-10 |
3d4 | 3d4 | 3H | 3H | 4 | 5 | 340831.6 | 24932.5 | 25225.9 | 6.60E-04 | 1.09E-13 |
3d4 | 3d4 | 3H | 3H | 4 | 6 | 167785.2 | 24932.5 | 25528.5 | 0.00E+00 | 2.54E-12 |
3d4 | 3d4 | 3H | 3H | 5 | 6 | 330469.3 | 25225.9 | 25528.5 | 6.12E-04 | 6.75E-15 |
3d4 | 3d4 | 3H | 3F2 | 4 | 2 | 54698.6 | 24932.5 | 26760.7 | 0.00E+00 | 9.98E-08 |
3d4 | 3d4 | 3H | 3F2 | 4 | 3 | 52361.5 | 24932.5 | 26842.3 | 1.55E-03 | 1.85E-08 |
3d4 | 3d4 | 3H | 3F2 | 5 | 3 | 61865.9 | 25225.9 | 26842.3 | 0.00E+00 | 6.77E-08 |
3d4 | 3d4 | 3H | 3F2 | 4 | 4 | 48983.6 | 24932.5 | 26974.0 | 6.05E-03 | 1.10E-10 |
3d4 | 3d4 | 3H | 3F2 | 5 | 4 | 57205.0 | 25225.9 | 26974.0 | 9.40E-04 | 1.17E-08 |
3d4 | 3d4 | 3H | 3F2 | 6 | 4 | 69180.2 | 25528.5 | 26974.0 | 0.00E+00 | 3.72E-08 |
3d4 | 3d4 | 3H | 3G | 5 | 3 | 21780.8 | 25225.9 | 29817.1 | 0.00E+00 | 4.24E-06 |
3d4 | 3d4 | 3H | 3G | 5 | 4 | 20320.7 | 25225.9 | 30147.0 | 4.59E-04 | 9.52E-05 |
3d4 | 3d4 | 3H | 3G | 6 | 4 | 21652.1 | 25528.5 | 30147.0 | 0.00E+00 | 3.21E-06 |
3d4 | 3d3(4F) | 3H | 5F | 4 | 2 | 618.1 | 24932.5 | 186725.5 | 0.00E+00 | 1.66E+01 |
3d4 | 3d3(4F) | 3H | 5F | 4 | 3 | 616.4 | 24932.5 | 187157.5 | 1.72E-06 | 3.91E+00 |
3d4 | 3d3(4F) | 3H | 5F | 5 | 3 | 617.5 | 25225.9 | 187157.5 | 0.00E+00 | 2.08E+01 |
3d4 | 3d3(4F) | 3H | 5F | 4 | 4 | 614.3 | 24932.5 | 187719.0 | 2.68E-06 | 2.75E-01 |
3d4 | 3d3(4F) | 3H | 5F | 5 | 4 | 615.4 | 25225.9 | 187719.0 | 5.44E-07 | 6.70E+00 |
3d4 | 3d3(4F) | 3H | 5F | 6 | 4 | 616.6 | 25528.5 | 187719.0 | 0.00E+00 | 1.47E+01 |
3d4 | 3d3(4F) | 3H | 5F | 4 | 5 | 611.8 | 24932.5 | 188395.3 | 1.06E-07 | 3.46E-03 |
3d4 | 3d3(4F) | 3H | 5F | 5 | 5 | 612.9 | 25225.9 | 188395.3 | 3.70E-06 | 2.25E-01 |
3d4 | 3d3(4F) | 3H | 5F | 6 | 5 | 614.0 | 25528.5 | 188395.3 | 3.61E-07 | 8.33E+00 |
3d4 | 3d4 | 3F2 | 3F2 | 2 | 3 | 1225490.2 | 26760.7 | 26842.3 | 1.34E-05 | 4.26E-15 |
3d4 | 3d4 | 3F2 | 3F2 | 2 | 4 | 468823.3 | 26760.7 | 26974.0 | 0.00E+00 | 5.33E-15 |
3d4 | 3d4 | 3F2 | 3F2 | 3 | 4 | 759301.4 | 26842.3 | 26974.0 | 4.60E-05 | 2.91E-14 |
3d4 | 3d4 | 3F2 | 3G | 4 | 3 | 35172.9 | 26974.0 | 29817.1 | 1.89E-04 | 1.37E-07 |
3d4 | 3d4 | 3F2 | 3G | 2 | 4 | 29530.8 | 26760.7 | 30147.0 | 0.00E+00 | 1.13E-07 |
3d4 | 3d4 | 3F2 | 3G | 3 | 4 | 30259.9 | 26842.3 | 30147.0 | 7.94E-04 | 1.22E-06 |
3d4 | 3d4 | 3F2 | 3G | 3 | 5 | 27872.2 | 26842.3 | 30430.1 | 0.00E+00 | 8.99E-08 |
3d4 | 3d4 | 3G | 3G | 3 | 4 | 303122.2 | 29817.1 | 30147.0 | 9.18E-04 | 5.80E-13 |
3d4 | 3d4 | 3G | 3G | 3 | 5 | 163132.1 | 29817.1 | 30430.1 | 0.00E+00 | 3.11E-12 |
3d4 | 3d4 | 3G | 3G | 4 | 5 | 353232.1 | 30147.0 | 30430.1 | 4.69E-04 | 5.41E-13 |
Copyright The European Southern Observatory (ESO)