Liedahl ([1999]) described the basic mechanisms of density diagnostics for X-ray photoionized plasmas from He-like ions. As he noted, a proper calculation of the population of the n=2 shell levels depends upon a number of additional levels. We propose in this article to use extensive calculations of atomic data taking into account upper level (n>2) radiative cascade contribution on n=2 shell levels for C V, N VI, O VII, Ne IX, Mg XI, and Si XIII, to give a much more precise treatment of this plasma diagnostic.
We consider in this paper, the main atomic processes involved in pure photoionized and hybrid plasmas: radiative recombination and dielectronic recombination (only important for high temperature plasmas), collisional excitation inside the n=2 shell, and collisional excitation from the ground level (important for high temperature plasmas).
Using the SUPERSTRUCTURE code (Eissner et al. [1974]), we have calculated the energy levels for the first 49 fine-structure levels (
2S+1LJ) for the six ions. This corresponds to the levels of the first 15 configurations (from 1s2 to 1s5g).
Nevertheless, for the first seven levels, we have preferred to use the Vainshtein & Safronova ([1985]) data which have a slightly better accuracy (10-3).
i | conf | level | C V | N VI | O VII | Ne IX | Mg XI | Si XIII |
1 | 1s2 |
![]() |
0. | 0. | 0. | 0. | 0. | 0. |
2 | 1s2s |
![]() |
2.4114(+6) | 3.3859(+6) | 4.5253(+6) | 7.2996(+6) | 10.7358(+6) | 14.8357(+6) |
3 | 1s2p |
![]() |
2.4553(+6) | 3.4383(+6) | 4.5863(+6) | 7.3779(+6) | 10.8317(+6) | 14.9495(+6) |
4 | 1s2p |
![]() |
2.4552(+6) | 3.4383(+6) | 4.5863(+6) | 7.3782(+6) | 10.8325(+6) | 14.9513(+6) |
5 | 1s2p |
![]() |
2.4554(+6) | 3.4386(+6) | 4.5869(+6) | 7.3798(+6) | 10.8361(+6) | 14.9585(+6) |
6 | 1s2s |
![]() |
2.4551(+6) | 3.4393(+6) | 4.5884(+6) | 7.3824(+6) | 10.8385(+6) | 14.9585(+6) |
7 | 1s2p |
![]() |
2.4833(+6) | 3.4737(+6) | 4.6291(+6) | 7.4361(+6) | 10.9062(+6) | 15.0417(+6) |
8 | 1s3s |
![]() |
2.8239(+6) | 3.9765(+6) | 5.3251(+6) | 8.6105(+6) | 12.6824(+6) | 17.5435(+6) |
9 | 1s3p |
![]() |
2.8352(+6) | 3.9902(+6) | 5.3441(+6) | 8.6314(+6) | 12.7081(+6) | 17.5741(+6) |
10 | 1s3p |
![]() |
2.8352(+6) | 3.9903(+6) | 5.3412(+6) | 8.6316(+6) | 12.7087(+6) | 17.5752(+6) |
11 | 1s3p |
![]() |
2.8353(+6) | 3.9904(+6) | 5.3414(+6) | 8.6322(+6) | 12.7099(+6) | 17.5775(+6) |
12 | 1s3s |
![]() |
2.8401(+6) | 3.9953(+6) | 5.3463(+6) | 8.6368(+6) | 12.7136(+6) | 17.5795(+6) |
13 | 1s3d |
![]() |
2.8408(+6) | 3.9973(+6) | 5.3497(+6) | 8.6433(+6) | 12.7238(+6) | 17.5942(+6) |
14 | 1s3d |
![]() |
2.8408(+6) | 3.9973(+6) | 5.3497(+6) | 8.6433(+6) | 12.7239(+6) | 17.5945(+6) |
15 | 1s3d |
![]() |
2.8408(+6) | 3.9973(+6) | 5.3498(+6) | 8.6435(+6) | 12.7244(+6) | 17.5953(+6) |
16 | 1s3d |
![]() |
2.8411(+6) | 3.9977(+6) | 5.3502(+6) | 8.6411(+6) | 12.7251(+6) | 17.5962(+6) |
17 | 1s3p |
![]() |
2.8433(+6) | 4.0004(+6) | 5.3534(+6) | 8.6480(+6) | 12.7294(+6) | 17.6005(+6) |
Aki (s-1) | |||||||
i | k | C V | N VI | O VII | Ne IX | Mg XI | Si XIII |
1 | 2 | 4.960(+01)![]() |
2.530(+02)![]() |
1.060(+03)![]() |
1.100(+04)![]() |
7.330(+04)![]() |
3.610(+05)![]() |
1 | 4 | 2.159(+07) | 1.100(+08) | 4.447(+08) | 4.470(+09) | 2.867(+10) | 1.345(+11) |
1 | 5 | 2.650(+04)![]() |
1.030(+05)![]() |
3.330(+05)![]() |
2.270(+06)![]() |
1.060(+07)![]() |
3.890(+07)![]() |
1 | 6 | 3.310(+05)![]() |
9.430(+05)![]() |
2.310(+06)![]() |
1.000(+07)![]() |
3.220(+07)![]() |
8.470(+07)![]() |
1 | 7 | 9.477(+11) | 1.911(+12) | 3.467(+12) | 9.197(+12) | 2.010(+13) | 3.857(+13) |
1 | 10 | 6.939(+06) | 3.525(+07) | 1.423(+08) | 1.429(+09) | 9.141(+09) | 4.268(+10) |
1 | 17 | 3.105(+11) | 6.061(+11) | 1.073(+12) | 2.752(+12) | 5.877(+12) | 1.107(+13) |
2 | 3 | 5.616(+07) | 6.717(+07) | 7.818(+07) | 1.003(+08) | 1.228(+08) | 1.460(+08) |
2 | 4 | 5.655(+07) | 6.794(+07) | 7.956(+07) | 1.039(+08) | 1.304(+08) | 1.602(+08) |
2 | 5 | 5.735(+07) | 6.955(+07) | 8.249(+07) | 1.118(+08) | 1.486(+08) | 1.977(+08) |
2 | 9 | 1.376(+10) | 2.872(+10) | 5.342(+10) | 1.466(+11) | 3.280(+11) | 6.406(+11) |
2 | 10 | 1.375(+10) | 2.870(+10) | 5.337(+10) | 1.464(+11) | 3.269(+11) | 6.366(+11) |
2 | 11 | 1.374(+10) | 2.867(+10) | 5.329(+10) | 1.461(+11) | 3.262(+11) | 6.360(+11) |
2 | 17 | 2.898(+05) | 1.607(+06) | 6.902(+06) | 7.514(+07) | 5.061(+08) | 2.452(+09) |
3 | 8 | 7.088(+08) | 1.366(+09) | 2.398(+09) | 6.079(+09) | 1.290(+10) | 2.426(+10) |
3 | 13 | 2.349(+10) | 4.847(+10) | 8.947(+10) | 2.432(+11) | 5.408(+11) | 1.052(+12) |
4 | 8 | 2.129(+09) | 4.106(+09) | 7.211(+09) | 1.831(+10) | 3.890(+10) | 7.315(+10) |
4 | 13 | 1.761(+10) | 3.634(+10) | 6.706(+10) | 1.822(+11) | 4.046(+11) | 7.856(+11) |
4 | 14 | 3.165(+10) | 6.519(+10) | 1.199(+11) | 3.213(+11) | 6.967(+11) | 1.314(+12) |
4 | 16 | 5.150(+07) | 2.346(+08) | 8.525(+08) | 6.862(+09) | 3.311(+10) | 1.073(+11) |
5 | 8 | 3.557(+09) | 6.870(+09) | 1.208(+10) | 3.080(+10) | 6.583(+10) | 1.248(+11) |
5 | 13 | 1.174(+09) | 2.421(+09) | 4.468(+09) | 1.213(+10) | 2.695(+10) | 5.240(+10) |
5 | 14 | 1.054(+10) | 2.169(+10) | 3.983(+10) | 1.061(+11) | 2.268(+11) | 4.173(+11) |
5 | 15 | 4.225(+10) | 8.718(+10) | 1.609(+11) | 4.369(+11) | 9.708(+11) | 1.887(+12) |
5 | 16 | 2.214(+07) | 1.025(+08) | 3.784(+08) | 3.145(+09) | 1.582(+10) | 5.438(+10) |
6 | 7 | 5.875(+06) | 9.199(+06) | 1.307(+07) | 2.266(+07) | 3.541(+07) | 5.286(+07) |
6 | 10 | 4.013(+05) | 2.088(+06) | 8.582(+06) | 8.838(+07) | 5.759(+08) | 2.730(+09) |
6 | 17 | 1.457(+10) | 2.982(+10) | 5.478(+10) | 1.482(+11) | 3.286(+11) | 6.371(+11) |
7 | 12 | 5.646(+09) | 1.145(+10) | 2.071(+10) | 5.436(+10) | 1.175(+11) | 2.232(+11) |
7 | 13 | 3.673(+05) | 1.940(+06) | 8.054(+06) | 8.401(+07) | 5.522(+08) | 2.638(+09) |
7 | 14 | 6.862(+07) | 3.164(+08) | 1.162(+09) | 9.519(+09) | 4.675(+10) | 1.547(+11) |
7 | 16 | 3.950(+10) | 8.194(+10) | 1.516(+11) | 4.092(+11) | 8.896(+11) | 1.674(+12) |
In Table 1, in order to reduce the amount of data, we only report the energy levels for the first 17 levels (n=1 to n=3 shell). The values for the others levels are available on request. The transition probabilities (Aki in s-1) for the "allowed'' transition (E1), are also calculated by the SUPERSTRUCTURE code; for the other transitions (M1, M2 & 2E1) the Aki values are from Lin et al. ([1977]). In a same way, only direct radiative contributions of the first 17 levels onto the first 7 levels are given in Table 2.
Blumenthal et al. ([1972]) have noted that radiative and dielectronic recombination can have a significant effect on the populations of the n=2 states in He-like ions through radiative cascades from higher levels as well as through direct recombination.
For radiative recombination rate coefficients, we have used the method of Bely-Dubau et al. ([1982a]). This method is based on (Z-0.5) screened hydrogenic approximation of the Burgess ([1958]) formulae, as we explain below.
For recombination of a bare nucleus of charge Z to form H-like ions, Burgess
([1958]) fitted simple power law expressions to the "exact'' theoretical
hydrogenic photoionization cross-sections
(in cm2) for the
n l levels (
and
). According to Burgess "for moderately
small n, the errors should be not more than about 5%. Such accuracy should be sufficient
for most astrophysical applications''.
Bely-Dubau et al. ([1982a]) used this equation for He-like 1snl levels by replacing Z with (Z-0.5). The quantity (Z-0.5) was chosen to take into account the screening of the 1s orbital. To check the validity of this assumption we compared the photoionization cross sections obtained from Eq. (3) to the recent calculations of the Opacity Project by Fernley et al. ([1987]). In Fig. 2 are plotted photoionisation cross sections for 1s2s 1S 3S, 1s2p 1P 3P and 1s10d 1D 3D for Z = 6, 10, 14 (continuous curves), scaled as (Z-0.5). With the exception of 1s2p 1P, the three continuous curves can hardly be distinguished. Furthermore, the curves do not differ when passing from singlet to triplet cases. This is strong evidence that for 1snl, it is possible to use screened hydrogenic calculations. For comparison, we give the present calculation corresponding to Eq. (3) modified (empty circles).
The Opacity Project data were taken from the Topbase Bank (Cunto et al. [1993]).
This bank includes the 1snl photoionization cross sections for
and
l=0,1,2. The Burgess data,
and
,
are more
complete since they also include
.
Formula (3) is also more convenient since
being analytic one can derive directly the radiative recombination rates
(cm3s-1) from it.
![]() |
![]() |
||
+ (l+1) | ![]() |
(5) |
![]() |
(7) |
Finally, to transform H-like data to He-like data, we used the two following
expressions for 1s2 and 1snl:
![]() |
(8) |
![]() |
(9) |
For
,
we have used the Seaton ([1959]) formula (see below) which
gives RR rates for each quantum number n (shell) of H-like ions. We have assumed that the
l recombination for such high n is the same as for n=10.
Seaton derived his formula by expanding the Gaunt factor, usually taken to be one, to third
order (Menzel & Pekeris [1935]; Burgess [1958]). According to
Seaton, the radiative recombination rates (in cm3s-1) for the n shell of
H-like ions can be written as:
![]() |
(11) |
![]() |
(12) |
![]() |
(13) |
![]() |
(14) |
Tables 3, 4, 5, 6, 7 and 8 report separately the direct and the cascade contribution to the RR rate coefficients for each 1s2l level.
We checked that the calculated rates summed over
and l, added to the rate of the
1s2 (ground level) level, are similar to the total RR rates calculated by Arnaud &
Rothenflug ([1985]), Pequignot et al. ([1991]), Mazzotta et al.
([1998]), Jacobs et al. ([1977]) (for He-like Fe ion) and Nahar
([1999]) (for O VII). Since these authors used hydrogenic formulae, the RR
rate coefficient depends on which screening value was used. As already noted, we have taken
for our calculations a screening of 0.5 which is a realistic screening of the atomic nuclei
by the 1s inner electron. Most probably, some of these authors have used a (Z-1) scaling.
For example for C V, a screening of unity implies a lower value by some 20% with
respect to the value obtained with a screening of 0.5.
For the low temperature range (photoionized plasma) considered in this paper the dielectronic recombination can be neglected. However at high temperatures, the contribution of DR is no longer negligible. Therefore, we have calculated DR coefficients rates (direct plus upper (n>2) level radiative cascade contribution).
We used the same method as Bely-Dubau et al. ([1982a]). The AUTOLSJ
code (including the SUPERSTRUCTURE code) was run with 42 configurations belonging to 1snl,
2snl and 2pnl, with .
All the fine-structure radiative and autoionization
probabilities were calculated. For low Z ions, it was necessary to do an extrapolation to
higher n autoionizing levels. Specifically, we extrapolate autoionization probabilities,
as 1/n3, while keeping the radiative probabilities constant. This extrapolation is not
perfectly accurate, and we can estimate that the RD for C, N and O might be slightly over or
under estimated.
In Tables 3, 4 ,5, 6, 7, and 8, the DR rates are reported for Z=6, 7, 8, 10, 12, 14 over a wide range of temperature.
The collisional excitation (CE) rate coefficient (in cm3s-1) for each
transition is given by:
![]() |
(15) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
5.0(+04) | 2.43
![]() |
7.13(-14) | 2.14(-13) | 3.57(-13) | 8.09(-14) | 2.14(-13) |
8.97
![]() |
2.51(-13) | 7.51(-13) | 1.25(-12) | 1.69(-14) | 6.87(-13) | |
0![]() |
0 | 0 | 0 | 0 | 0 | |
1.0(+05) |
1.71(-13) | 4.85(-14) | 1.46(-13) | 2.43(-13) | 5.69(-14) | 1.46(-13) |
5.78(-13) | 1.43(-13) | 4.30(-13) | 7.16(-13) | 1.09(-14) | 3.89(-13) | |
0 | 0 | 0 | 0 | 0 | 0 | |
2.0(+05) |
1.20(-13) | 3.20(-14) | 9.60(-14) | 1.60(-13) | 3.99(-14) | 9.60(-14) |
3.58(-13) | 7.80(-14) | 2.34(-13) | 3.89(-13) | 6.70(-15) | 2.09(-13) | |
4.32(-19) | 1.34(-20) | 3.81(-20) | 5.13(-20) | 1.33(-19) | 5.61(-19) | |
5.0(+05) |
7.35(-14) | 1.71(-14) | 5.12(-14) | 8.54(-14) | 2.45(-14) | 5.12(-14) |
1.75(-13) | 3.19(-14) | 9.58(-14) | 1.60(-13) | 3.30(-15) | 8.38(-14) | |
2.75(-15) | 4.72(-16) | 1.28(-15) | 1.55(-15) | 6.77(-16) | 4.56(-15) | |
1.0(+06) |
4.96(-14) | 9.77(-15) | 2.93(-14) | 4.89(-14) | 1.65(-14) | 2.93(-14) |
9.64(-14) | 1.53(-14) | 4.60(-14) | 7.61(-14) | 1.80(-15) | 3.95(-14) | |
3.72(-14) | 8.94(-15) | 2.42(-14) | 2.85(-14) | 8.17(-15) | 6.92(-14) | |
2.0(+06) |
3.24(-14) | 5.10(-15) | 1.53(-14) | 2.55(-14) | 1.08(-14) | 1.53(-14) |
4.98(-14) | 7.10(-15) | 2.12(-14) | 3.53(-14) | 9.00(-16) | 1.79(-14) | |
8.57(-14) | 2.32(-14) | 6.26(-14) | 7.31(-14) | 1.80(-14) | 1.68(-13) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
7.0(+04) | 2.86(-13) | 8.42(-14) | 2.53(-13) | 4.21(-13) | 9.55(-14) | 2.53(-13) |
1.07(-12) | 2.94(-13) | 8.77(-13) | 1.47(-12) | 2.35(-14) | 8.07(-13) | |
0 | 0 | 0 | 0 | 0 | 0 | |
1.4(+05) |
2.02(-13) | 5.73(-14) | 1.72(-13) | 2.86(-13) | 6.72(-14) | 1.72(-13) |
6.91(-13) | 1.68(-13) | 5.04(-13) | 8.44(-13) | 1.52(-14) | 4.58(-13) | |
0 | 0 | 0 | 0 | 0 | 0 | |
2.8(+05) |
1.41(-13) | 3.78(-14) | 1.13(-13) | 1.89(-13) | 4.71(-14) | 1.13(-13) |
4.28(-13) | 9.12(-14) | 2.74(-13) | 4.56(-13) | 9.30(-15) | 2.46(-13) | |
8.56(-18) | 3.67(-20) | 1.34(-19) | 2.38(-19) | 2.90(-18) | 1.17(-17) | |
7.0(+05) |
8.68(-14) | 2.02(-14) | 6.05(-14) | 1.01(-13) | 2.89(-14) | 6.05(-14) |
2.10(-13) | 3.72(-14) | 1.12(-13) | 1.86(-13) | 4.60(-15) | 9.85(-14) | |
6.58(-15) | 5.98(-16) | 1.50(-15) | 1.75(-15) | 2.00(-15) | 9.76(-15) | |
1.4(+06) |
5.86(-14) | 1.15(-14) | 3.46(-14) | 5.76(-14) | 1.95(-14) | 3.46(-14) |
1.15(-13) | 1.79(-14) | 5.36(-14) | 8.94(-14) | 2.50(-15) | 4.64(-14) | |
4.88(-14) | 1.03(-14) | 2.54(-14) | 2.82(-14) | 1.26(-14) | 8.57(-14) | |
2.8(+06) |
3.82(-14) | 6.02(-15) | 1.81(-14) | 3.01(-14) | 1.27(-14) | 1.81(-14) |
5.97(-14) | 8.18(-15) | 2.46(-14) | 4.11(-14) | 1.30(-15) | 2.09(-14) | |
9.17(-14) | 2.56(-14) | 6.27(-14) | 6.85(-14) | 2.16(-14) | 1.76(-13) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
9.0(+04) | 3.36(-13) | 9.90(-14) | 2.97(-13) | 4.95(-13) | 1.12(-13) | 2.97(-13) |
1.24(-12) | 3.51(-13) | 1.05(-12) | 1.75(-12) | 2.50(-14) | 9.63(-13) | |
0 | 0 | 0 | 0 | 0 | 0 | |
1.8(+05) | 2.37(-13) | 6.74(-14) | 2.02(-13) | 3.37(-13) | 7.89(-14) | 2.02(-13) |
8.03(-13) | 2.02(-13) | 6.05(-13) | 1.01(-12) | 1.63(-14) | 5.50(-13) | |
0 | 0 | 0 | 0 | 0 | 0 | |
3.6(+05) | 1.66(-13) | 4.45(-14) | 1.34(-13) | 2.23(-13) | 5.53(-14) | 1.34(-13) |
4.95(-13) | 1.10(-13) | 3.29(-13) | 5.50(-13) | 1.01(-14) | 2.96(-13) | |
9.67(-19) | 1.86(-20) | 5.19(-20) | 6.73(-20) | 3.42(-19) | 1.36(-18) | |
9.0(+05) | 1.02(-13) | 2.39(-14) | 7.16(-14) | 1.19(-13) | 3.40(-14) | 7.16(-14) |
2.44(-13) | 4.52(-14) | 1.35(-13) | 2.27(-13) | 4.90(-15) | 1.19(-13) | |
3.55(-15) | 4.90(-16) | 1.32(-15) | 1.54(-15) | 1.05(-15) | 6.02(-15) | |
1.8(+06) | 6.90(-14) | 1.37(-14) | 4.11(-14) | 6.85(-14) | 2.30(-14) | 4.11(-14) |
1.34(-13) | 2.18(-14) | 6.49(-14) | 1.09(-13) | 2.70(-15) | 5.65(-14) | |
3.90(-14) | 8.49(-15) | 2.26(-14) | 2.57(-14) | 1.01(-14) | 7.43(-14) | |
3.6(+06) | 4.51(-14) | 7.19(-15) | 2.16(-14) | 3.60(-14) | 1.50(-14) | 2.16(-14) |
6.99(-14) | 1.00(-14) | 3.01(-14) | 5.02(-14) | 1.40(-15) | 2.56(-14) | |
8.19(-14) | 2.11(-14) | 5.60(-14) | 6.28(-14) | 1.98(-14) | 1.65(-13) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
1.4(+05) | 4.33(-13) | 1.27(-13) | 3.82(-13) | 6.37(-13) | 1.44(-13) | 3.82(-13) |
1.59(-12) | 4.57(-13) | 1.37(-12) | 2.28(-12) | 3.40(-14) | 1.26(-12) | |
0 | 0 | 0 | 0 | 0 | 0 | |
2.8(+05) | 3.05(-13) | 8.69(-14) | 2.61(-13) | 4.35(-13) | 1.02(-13) | 2.61(-13) |
1.02(-12) | 2.62(-13) | 7.89(-13) | 1.31(-12) | 2.20(-14) | 7.19(-13) | |
0 | 0 | 0 | 0 | 0 | 0 | |
5.6(+05) | 2.14(-13) | 5.75(-14) | 1.73(-13) | 2.88(-13) | 7.12(-14) | 1.73(-13) |
6.35(-13) | 1.43(-13) | 4.31(-13) | 7.22(-13) | 1.36(-14) | 3.88(-13) | |
1.22(-18) | 1.19(-20) | 3.74(-20) | 5.73(-20) | 5.29(-19) | 2.01(-18) | |
1.4(+06) | 1.31(-13) | 3.09(-14) | 9.28(-14) | 1.55(-13) | 4.38(-14) | 9.28(-14) |
3.15(-13) | 5.93(-14) | 1.78(-13) | 2.97(-13) | 6.70(-15) | 1.57(-13) | |
3.65(-15) | 2.68(-16) | 8.31(-16) | 1.19(-15) | 1.38(-15) | 6.78(-15) | |
2.8(+06) | 8.90(-14) | 1.78(-14) | 5.35(-14) | 8.91(-14) | 2.97(-14) | 5.35(-14) |
1.73(-13) | 2.86(-14) | 8.55(-14) | 1.43(-13) | 3.60(-15) | 7.45(-14) | |
3.66(-14) | 4.47(-15) | 1.38(-14) | 1.96(-14) | 1.23(-14) | 7.45(-14) | |
5.6(+06) | 5.83(-14) | 9.39(-15) | 2.82(-14) | 4.70(-14) | 1.94(-14) | 2.82(-14) |
8.97(-14) | 1.32(-14) | 3.96(-14) | 6.60(-14) | 1.90(-15) | 3.40(-14) | |
7.37(-14) | 1.09(-14) | 3.37(-14) | 4.75(-14) | 2.32(-14) | 1.57(-13) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
2.0(+05) | 5.30(-13) | 1.56(-13) | 4.69(-13) | 7.82(-13) | 1.77(-13) | 4.69(-13) |
1.94(-12) | 5.65(-13) | 1.70(-12) | 2.83(-12) | 4.30(-14) | 1.56(-12) | |
0 | 0 | 0 | 0 | 0 | 0 | |
4.0(+05) | 3.74(-13) | 1.07(-13) | 3.20(-13) | 5.34(-13) | 1.25(-13) | 3.20(-13) |
1.25(-12) | 3.25(-13) | 9.80(-13) | 1.63(-12) | 2.80(-14) | 8.90(-13) | |
0 | 0 | 0 | 0 | 0 | 0 | |
8.0(+05) | 2.62(-13) | 7.07(-14) | 2.12(-13) | 3.54(-13) | 8.74(-14) | 2.12(-13) |
7.78(-13) | 1.78(-13) | 5.36(-13) | 8.96(-13) | 1.76(-14) | 4.85(-13) | |
1.19(-18) | 7.95(-21) | 2.92(-20) | 4.91(-20) | 6.68(-19) | 2.45(-18) | |
2.0(+06) | 1.61(-13) | 3.81(-14) | 1.14(-13) | 1.91(-13) | 5.38(-14) | 1.14(-13) |
3.85(-13) | 7.39(-14) | 2.22(-13) | 3.70(-13) | 8.60(-15) | 1.98(-13) | |
3.36(-15) | 1.71(-16) | 6.40(-16) | 9.60(-16) | 1.61(-15) | 7.10(-15) | |
4.0(+06) | 1.09(-13) | 2.21(-14) | 6.62(-14) | 1.10(-13) | 3.64(-14) | 6.62(-14) |
2.13(-13) | 3.56(-14) | 1.07(-13) | 1.79(-13) | 4.80(-15) | 9.38(-14) | |
3.31(-14) | 2.83(-15) | 1.07(-14) | 1.59(-14) | 1.36(-14) | 7.11(-14) | |
8.0(+06) | 7.17(-14) | 1.17(-14) | 3.50(-14) | 5.83(-14) | 2.39(-14) | 3.50(-14) |
1.11(-13) | 1.64(-14) | 4.95(-14) | 8.27(-14) | 2.50(-15) | 4.27(-14) | |
6.62(-14) | 6.90(-15) | 2.62(-14) | 3.88(-14) | 2.47(-14) | 1.44(-13) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
2.8(+05) | 6.23(-13) | 1.84(-13) | 5.52(-13) | 9.19(-13) | 2.08(-13) | 5.52(-13) |
2.25(-12) | 6.65(-13) | 2.00(-12) | 3.33(-12) | 5.30(-14) | 1.85(-12) | |
0 | 0 | 0 | 0 | 0 | 0 | |
5.5(+05) | 4.39(-13) | 1.25(-13) | 3.76(-13) | 6.27(-13) | 1.46(-13) | 3.76(-13) |
1.44(-12) | 3.84(-13) | 1.15(-12) | 1.92(-12) | 3.50(-14) | 1.05(-12) | |
0 | 0 | 0 | 0 | 0 | 0 | |
1.1(+06) | 3.08(-13) | 8.32(-14) | 2.49(-13) | 4.16(-13) | 1.03(-13) | 2.49(-13) |
8.92(-13) | 2.10(-13) | 6.32(-13) | 1.05(-12) | 2.10(-14) | 5.74(-13) | |
1.29(-18) | 8.47(-21) | 3.32(-20) | 6.78(-20) | 9.70(-19) | 3.46(-18) | |
2.8(+06) | 1.90(-13) | 4.49(-14) | 1.35(-13) | 2.24(-13) | 6.32(-14) | 1.35(-13) |
4.45(-13) | 8.71(-14) | 2.61(-13) | 4.37(-13) | 1.06(-14) | 2.34(-13) | |
3.43(-15) | 1.77(-16) | 6.55(-16) | 9.75(-16) | 2.09(-15) | 8.56(-15) | |
5.5(+06) | 1.29(-13) | 2.59(-14) | 7.78(-14) | 1.30(-13) | 4.28(-14) | 7.78(-14) |
2.46(-13) | 4.20(-14) | 1.26(-13) | 2.11(-13) | 5.90(-15) | 1.11(-13) | |
2.97(-14) | 2.50(-15) | 9.28(-15) | 1.35(-14) | 1.48(-14) | 6.93(-14) | |
1.1(+07) | 8.43(-14) | 1.37(-14) | 4.12(-14) | 6.86(-14) | 2.81(-14) | 4.12(-14) |
1.29(-13) | 1.94(-14) | 5.83(-14) | 9.74(-14) | 3.10(-15) | 5.07(-14) | |
5.84(-14) | 5.93(-15) | 2.21(-14) | 3.20(-14) | 2.55(-14) | 1.30(-13) |
The 1s2l-1s2l' transitions (i.e. inside the n=2 shell) are very important for density diagnostic purpose. The data are from Zhang & Sampson ([1987]).
Below, we report scaled effective collision strength
.
We also use a scaled electronic temperature
). The (
Z-0.5)2 coefficient has been chosen to obtain
scaled
almost independent of Z (for 6
14). In
Fig. 4,
)
is displayed for the four most
important transitions (between 23S1 and 23P0,1,2 levels, and between
21S0 and 21P1 levels) including both direct and resonant contribution,
and for comparison the direct contribution alone is shown for Z=8. We remark that the
curves
(T
)
are nearly identical for different Z, and for these
transitions the resonant contribution is quite negligible since the two curves for Z=8 are
superposed. The rates for the transitions between 23S1 and 23P0,1,2 levels are proportional to their statistical weight. The curves for transitions
23S1-23P1 21S0-21P1 are nearly identical.
These high values of
inside the n=2 shell and the small energy
difference between these levels, favour transitions by excitation between the n=2 shell
levels. Thus the excitation inside the n=2 shell should be taken into account even for low
temperature plasmas.
Excitation from n=2 levels to higher shell levels can be neglected due to the weak
population of the n=2 shell compared to the ground level (n=1) in a moderate density
plasma and also due to the high
)
values inside the n=2 shell which favour transitions between the n=2 levels, as we see below.
CE from the 1s2 (ground) level to excited levels are only important for high
temperature such as the hybrid case, due to the high energy difference between these levels.
For 1s2-1s2l transitions, we have used the effective collision strength values from
Zhang & Sampson ([1987]). These values include both non-resonant and resonant
contributions.
CE rates for the 1s2-1snl (
)
transitions are
from Sampson et al. ([1983]). Their calculations do not include resonance effects
but these are expected to be relatively small (Dubau [1994]). The rates converge as
n-3.
We have calculated the radiative cascade contribution from n>2 levels for each n=2 level. We have considered the first 49 levels, as fine-structure levels (LSJ); the
contributions from the n=6 to
levels are considered to converge as n-3.
The cascade contributions become more important for high temperatures. The cascade
contribution (from n>2 levels) increases steadily with temperature and has an effect
mostly on the 1s2s3S1 level. The resonant contribution increases then decreases
with temperature. For high temperature plasmas, cascade effects should be taken into
account. For very low temperature plasmas only the direct non-resonant contribution is
important, except for the 1s2s3S1 level which also receives cascade from
within the n=2 level, i.e. from 1s2p3P0,1,2 levels, as long as the density
does not redistribute the level population, i.e. the density is not above the critical
density.
Tables 9, 10, 11, 12 and 13 report data which correspond respectively to the direct (b), the resonance (c), and the n>2 cascade (d) contributions.
Copyright The European Southern Observatory (ESO)