Plate Id. | ![]() |
![]() |
Epoch | Emulsion | Filter | Medium |
POSSI E597 | 2:19 | 60:02 | 1952.708 | 103AE | 2444 | Glass Copy |
POSSII R114 | 1:54 | 60:00 | 1989.965 | IIIaF | RG 630 | Film Copy |
POSSII B114 | 1:54 | 60:00 | 1987.744 | IIIaJ | GG 395 | Film Copy |
The proper motion survey of Stock 2 is based on Super COSMOS scans
(Hambly et al. [1998])
of three POSS plates listed in Table 3.
A region of
has been scanned about the nominal cluster centre
with a positional accuracy of
m. The scans were performed
in the so-called Image Analysis Mode (Beard et al. [1990]),
which automatically
deblends objects and rejects extended objects like galaxies. A transformation
from plate to equatorial coordinates in the FK5 system has been performed
using PPM stars on the plate.
Using software provided by the Royal Observatory of Edinburgh, the following
reduction steps were performed:
The first task is to pair up the objects on the first and second epoch plate (E597 and R114, respectively). This involves identifying common objects, determining and applying a transformation from the coordinate system of the first epoch plate to the second epoch plate, and pairing up objects that lie at the same position (allowing for some small margin of error).
1000 bright stars in common are used to fit and apply a linear coordinate
transformation of the form
![]() |
= | a + bxm + cym | (1) |
![]() |
= | ![]() |
(2) |
Stars with equal coordinates
on both plates (i.e. the nearest star within m)
were considered as identical, and relative proper motions were derived.
However, two more systematic effects have to be accounted for.
Distortion of the plate emulsion can have serious effects on the
position of stars when large areas of the plate are analysed.
To avoid having to fit these complicated distortions, the plates were
subdivided into smaller regions (
boxes),
and proper motions determined independently within each region.
Secondly, stellar positions are magnitude dependent due to
the non-linearity of the plate emulsions.
The plate coordinate transformation was re-applied to stars of the first epoch plate in each of the 144 sub-regions independently. This was done in the same way as described above. Reference stars to fit the transformation equations were chosen automatically within a suitable magnitude range to avoid too faint or too bright and saturated stars. The residual positions were fitted as a function of magnitude and the residuals of this fit subtracted from the first epoch plate positions. This fit was re-iterated, until the fit converged. The remaining positional differences are the actual proper motions.
Within each of the 144 subregions, a background field distribution is
visible in vector point diagrams (VPDs), centered around zero proper motion.
More precisely, the average centre coordinate
of the proper motion distributions
of all 144 subregions is (-0.09, 0.37)
(0.60, 0.37) arcsec per year.
Each subfield has thus
the same zero point in proper motion, and
the results of all subregions are merged to one VPD
in Fig. 3.
The method of separating cluster members from background objects by means of a proper motion analysis is to identify a group of common proper motion stars that are distinct from the background population. However, plotting a VPD of the stellar proper motions at this stage would reveal very little, as the cluster stars are masked by the overwhelming majority of some 105 background objects. It is first necessary to preselect background stars by means of a colour magnitude diagram of the plate photometry, calibrated using the new CCD photometry.
Since our plate material supplies magnitudes in the photographic system,
the CCD photometry has first to be transformed to the
natural photographic
system using the equations
B-BJ | = | ![]() |
(3) |
R-R63F | = | ![]() |
|
![]() |
(4) |
Unfortunately, the CCD photometry covers only a small central region
of the scanned plate. Further investigation
suggested that there was a position dependent colour-shift
across the plate. If colour-magnitude diagrams were plotted
for different sub-regions of the plate, the position of the
density distribution of background field stars in the colour-magnitude
plane varied by up to 0.1 magnitudes in colour.
Whether this is due to problems with the photometric
calibration or the effect of
differential reddening across the field
(due to the low Galactic latitude,
,
of the cluster)
is unclear. The shifts are consistent with
an increased reddening towards the Galactic plane, but also with a
colour-effect towards the edge of the plate. In the absence of more
photometry with which to calibrate the photographic data, the plate
material was used
with the calibration determined from the central region.
Copyright The European Southern Observatory (ESO)