The potential curves and electric dipole transition moments are calculated by the multireference single- and double-excitation (MRD-CI) configuration interaction method (Buenker & Peyerimhoff [1974], [1975]; Buenker [1986]), with configuration selection and energy extrapolation using the Table CI algorithm (Buenker [1980], [1981]; Buenker & Phillips [1985]). During the CI excitation procedure, the five lowest molecular orbitals corresponding to 1s, 2s, and 2p orbitals of the heavy atoms are always doubly occupied, whereas some high virtual orbitals are discarded. The atomic orbital basis sets used in the present calculations contain at least one f-type function for the heavy atoms and one d-type function for the hydrogen atom. The basis sets consist of 73 contracted Gaussian functions for both PH+ and SH+, and 109 contracted functions for SiH+. Further details about our MRD-CI calculations on these species can be found in the following references: for SiH+ see Sannigrahi et al. ([1995]), for SH+ see Kimura et al. ([1997]), and for PH+ see Gu et al. ([1999]).
The potential curves of relevant states of the three ions are shown in
Figs. 1 to 3, respectively. In the region
a0, the
potentials are obtained from the ab initio calculations, whereas the
potentials for R < 2.0 a0 are obtained by fitting the last
few ab initio points using the form
.
The asymptotic
separated-atom and united-atom limits of these states can be
found in Table 1. The electric dipole and transition moments
are shown in Fig. 4. In the short R region (R < 2.0 a0),
their curves (full lines) are obtained by extrapolating
the form aR2 + bR to zero at the united-atom limit by using the last
few ab initio points. The contributions of the transition moments
in the very short R region to the final cross sections are expected to
be quite small although the exact positions of the "turning point''
of the electric transition moments of PH+ and SiH+ are somewhat
uncertain. Further details on SiH+ are given in Stancil et al.
([1997]).
In Table 2, the spectroscopic constants,
(equilibrium
distance),
and D0 (dissociation energies), and
(vibrational frequency), of the ground
states for the three ions are listed together with previous
experimental and theoretical results. It can be seen that there is
generally good agreement between the present calculations and previous
results. We find that the ground states of SiH+, PH+, and
SH+ support 22, 22, and 21 vibrational levels and 932, 760, and 731
rovibrational levels, respectively.
![]() |
![]() |
D0 (eV) |
![]() |
References | |
SiH+: | |||||
This work | 2.84 | 3.354 | 3.22 | 2155.0 | |
Exp. | 2.842 | 3.354 | 3.22 | 2157.15 | Carlson et al. ([1980]) |
Exp. | 2.842 | 3.17 | 2157.17 | Huber & Herzberg ([1979]) | |
Theory | 2.844 | 3.30 | 2161.23 | Matos et al. ([1988]) | |
Theory | 2.848 | 3.229 | 2155.35 | Hirst ([1986]) | |
Theory | 2.853 | 3.24 | 2153.5 | Rosmus & Meyer ([1977]) | |
PH+: | |||||
This work | 2.708 | 3.41 | 3.27 | 2370 | |
Exp. | 2.693 | 3.34 ![]() |
2299.6a | Narasimham ([1957]) | |
Theory | 2.692 | 3.41 | 3.26 | 2354 | Bruna et al. ([1981]) |
Theory | 2.704 | 3.31 | 2375.8 | Rosmus & Meyer ([1977]) | |
SH+: | |||||
This work | 2.581 | 3.52 | 3.36 | 2565 | |
Exp. | 2.5772 | (3.7) | (3.54) | 2547.7 | Rostas et al. ([1984]) |
Theory | 2.587 | 3.53 | 3.37 | 2535 | Bruna et al. ([1983]) |
Hirsch & Bruna ([1999]) | |||||
Theory | 2.585 | 3.73 | 2566.1 | Rosmus & Meyer ([1977]) |
Copyright The European Southern Observatory (ESO)