We recorded observing times on the UTC scale and converted them
into the TT scale prior to reduction. To this end, we used the
following relation:
t_{0} is the time of observation, MJD (MJD = JD  2400000.5) with fractions in the TTtime scale. This quantity is not necessary for subsequent determination of the elements of the satellite orbit, however, it can be used to control and identify the data.For each observed event the time t_{0} was chosen arbitrary within the period of phenomenon.
, are the times as explained above, MJD with fractions in the TT time scale.
, are two components (in kilometers) of the mutual position vector of satellites calculated using formulas (3) as the main results of the reduction of photometric observations.
, are the standard errors of , as inferred from the reduction of photometric observations (in kilometers). These errors can be used in subsequent computations to determine the weights in the least squares method.
a_{x}, a_{y}, a_{z}, b_{x}, b_{y}, b_{z}: the dimensionless coefficient required for application of the results obtained (see formula (2)). The value of a_{z}is always equal to zero.
The results presented also include corrections D_{x}, D_{y}, which incorporate the contributions due to observational errors and the errors of the theory. These corrections characterize the agreement between theory and observations (OC).
The accuracy of the relative satellite positions inferred from
photometric observations of mutual events is characterized by
standard errors ,
expressed as linear
quantities. It is interesting to compare these errors with the
accuracy of groundbased angle measurements expressed in
arcseconds. The observational errors of the two different types
can be coordinated by taking into account the angles at which
intervals
and
 the projections of the satellite 
satellite vector on the sky plane located at a topocentric
distance to the active satellite  are seen from the Earth.
This is the case when mutual occultations of satellites are considered.
When analyzing the mutual eclipses the sky plane is perpendicular
to the heliocentric direction of the eclipsed satellite. In this
case the angles corresponding to intervals
and
are
heliocentric angles. The accuracy of the determination of these
angles is then similar to that of groundbased photographic angle
measurements. Therefore along the standard errors
,
we also give the corresponding angular errors
computed using the following formulas:
We number the Galilean satellites in accordance with the generally accepted numbering system: Io  1, Europa  2, Ganymede  3, and Callisto  4.
We identify mutual phenomena of the Galilean satellites by assigning to them the codes consisting of date (yymmdd) and the following values separated by dash: (number of active satellite), P  type of mutual phenomenon, (number of passive satellite). P is O for mutual occultation and P is E for mutual eclipse. For example, identifier 9708034E1 refers to Io's eclipse by Callisto on August 3, 1997.
Each event could have been observed at several observatories yielding several light curves. To designate the particular light curve, we add the observer's code to the event identifier (see Table 1). This conventional code identifies the observatory, observers, and the equipment involved in each particular observation. Thus, if phenomenon 9708034E1 was observed at the Pulkovo observatory, the results should be coded as 9708034E1k. The results of observations of the same phenomenon made at the Nauchny observatory by observer Irsmambetova T.R. using photoelectric photometer will be referred to via identifier 9708034E1t.
Observation  a_{x}  a_{y}  b_{x}  b_{y}  b_{z}  
9704131O2d 
50550.990029  50550.989991  379  964  0.647097  0.762407  0.213239  0.180988  0.960090 
9704224O3d 
50560.963826  50560.963768  218  540  0.626288  0.779592  0.212176  0.170452  0.962251 
9706221E2a 
50621.854428  50621.854459  531  1396  0.700797  0.713360  0.216057  0.212252  0.953031 
9707063E4v 
50635.913714  50635.913775  674  2058  0.685900  0.727696  0.216626  0.204184  0.954663 
9707151O3a 
50644.767217  50644.767163  1020  2570  0.605868  0.795565  0.214879  0.163643  0.962833 
9707183E2a 
50647.766400  50647.766442  1108  3155  0.670902  0.741545  0.216719  0.196073  0.956341 
9707183O2a 
50647.843641  50647.843601  491  1443  0.609167  0.793042  0.215321  0.165397  0.962435 
9707183O2g 
50647.843647  50647.843607  531  1551  0.609165  0.793043  0.215322  0.165397  0.962434 
9707193O1a 
50648.851532  50648.851479  400  1055  0.611784  0.791025  0.215666  0.166798  0.962116 
9707241E4a 
50653.741856  50653.741934  818  2368  0.665072  0.746779  0.216751  0.193036  0.956951 
9707251E4a 
50654.846134  50654.846210  676  1823  0.663051  0.748574  0.216693  0.191937  0.957186 
9707251E4t 
50654.846106  50654.846182  533  1678  0.663051  0.748574  0.216693  0.191936  0.957186 
9707251E4g 
50654.846302  50654.846378  649  1880  0.663051  0.748574  0.216693  0.191936  0.957186 
9707253E2a 
50654.916027  50654.916066  1037  2996  0.662727  0.748861  0.216675  0.191753  0.957227 
9707253E2k 
50654.915886  50654.915926  1021  2998  0.662727  0.748861  0.216675  0.191753  0.957227 
9707253E2g 
50654.915801  50654.915841  997  2991  0.662727  0.748861  0.216675  0.191753  0.957227 
9707253O2k 
50654.969840  50654.969801  556  1432  0.620168  0.784469  0.216654  0.171277  0.961106 
9707253O2t 
50654.970338  50654.970300  515  1521  0.620169  0.784468  0.216653  0.171277  0.961106 
9707314E3e 
50660.991690  50660.991752  414  1170  0.655323  0.755349  0.216531  0.187857  0.958031 
9708014E2g 
50661.818732  50661.818817  1076  3235  0.654879  0.755734  0.216545  0.187647  0.958069 
9708014E2l 
50661.818615  50661.818700  1012  2951  0.654879  0.755733  0.216545  0.187647  0.958069 
9708014E3k 
50660.991652  50660.991714  423  1195  0.655323  0.755349  0.216531  0.187857  0.958031 
9708034E1k 
50662.980645  50662.980730  325  773  0.654328  0.756211  0.216578  0.187399  0.958110 
9708034E1l 
50662.980643  50662.980728  134  372  0.654328  0.756211  0.216578  0.187399  0.958110 
9708034E1t 
50662.980706  50662.980791  311  886  0.654328  0.756211  0.216578  0.187399  0.958110 
9708303E2a 
50690.754789  50690.754816  1214  3592  0.620757  0.784003  0.214981  0.170217  0.961670 
9708303O2a 
50690.646325  50690.646296  614  1892  0.678793  0.734330  0.220080  0.203436  0.954033 
9709031E3a 
50694.620004  50694.620040  79  194  0.617212  0.786797  0.214789  0.168494  0.962016 
9709063O2g 
50697.809825  50697.809798  746  2432  0.688229  0.725493  0.220037  0.208735  0.952897 
9709101O3a 
50701.655382  50701.655345  222  646  0.693845  0.720125  0.219966  0.211938  0.952206 
9709143E1e 
50705.716657  50705.716714  323  526  0.603294  0.797519  0.213624  0.161598  0.963458 
9709153E2a 
50706.608493  50706.608526  173  445  0.603013  0.797731  0.213642  0.161495  0.963471 
9709181O3g 
50709.687811  50709.687766  967  2883  0.700427  0.713724  0.219700  0.215607  0.951444 
9709181E3e 
50709.791892  50709.791940  166  467  0.598091  0.801428  0.213127  0.159053  0.963991 
9709181E3t 
50709.791845  50709.791893  138  526  0.598091  0.801428  0.213127  0.159053  0.963991 
9709213E1l 
50712.831184  50712.831240  462  1201  0.594581  0.804035  0.212791  0.157358  0.964343 
9709223E2g 
50713.768904  50713.768940  928  2302  0.594290  0.804251  0.212808  0.157252  0.964357 
9710074O1t 
50728.790911  50728.790826  1185  3373  0.708427  0.705784  0.219125  0.219946  0.950583 
9711094O2t 
50761.672069  50761.672005  1390  2436  0.686812  0.726835  0.219121  0.207056  0.953474 
9711094O2w 
50761.672881  50761.672816  918  2967  0.686812  0.726835  0.219122  0.207056  0.953474 
9711103E1t 
50762.710973  50762.711012  1139  2885  0.531928  0.846789  0.204298  0.128334  0.970460 
9711183O1g 
50770.562083  50770.562049  1155  3335  0.674907  0.737903  0.219004  0.200308  0.954942 

Observation 
Fig 
t_{0} 
D_{x}, km 
D_{y}, km  , km 
, km 


E(S) 
Q 
C 
9704131O2d 
1  50551.021346  571  56  24  27  0.006  0.007  K  V  6 
9704224O3d 
2  50560.994237  299  573  34  78  0.009  0.020  KPL  P  4 
9706221E2a 
3  50621.879701  291  222  44  32  0.012  0.008  KQ  P  1 
9707063E4v 
4  50635.938173  959  156  107  99  0.029  0.027  K  V  7 
9707151O3a 
5  50644.791125  218  419  63  42  0.021  0.014  KQ  P  2 
9707183E2a 
6  50647.790257  104  15  93  46  0.025  0.012  KQ  P  1 
9707183O2a 
7  50647.867410  74  327  7  7  0.002  0.002  KQ  P  2 
9707183O2g 
7  50647.867415  31  223  12  13  0.004  0.004  K  V  6 
9707193O1a 
8  50648.875257  80  88  19  23  0.006  0.008  KQ  P  2 
9707241E4a 
9  50653.765616  944  2155  165  106  0.045  0.029  KQ  P  1 
9707251E4a 
10  50654.869863  118  175  73  196  0.020  0.054  K  V  5 
9707251E4t 
10  50654.869835  1  330  28  27  0.007  0.007  K  V  6 
9707251E4g 
10  50654.870031  91  54  31  28  0.008  0.008  K  V  6 
9707253E2a 
11  50654.939655  142  116  96  51  0.026  0.014  KQ  P  1 
9707253E2k 
11  50654.939515  20  71  105  58  0.029  0.016  K  P  1 
9707253E2g 
11  50654.939429  41  36  71  36  0.019  0.010  K  V  6 
9707253O2k 
12  50654.993386  341  255  77  96  0.026  0.032  K  V  5 
9707253O2t 
12  50654.993885  87  179  6  16  0.002  0.006  KPL  P  4 
9707314E3e 
13  50661.015210  152  112  12  15  0.003  0.004  KQ  P  2 
9708014E2g 
14  50661.842276  371  101  151  92  0.041  0.025  K  V  6 
9708014E2l 
14  50661.842159  157  333  57  39  0.015  0.011  K  V  6 
9708014E3k 
15  50661.015172  138  80  52  55  0.014  0.015  KQ  P  1 
9708034E1k 
16  50663.004171  55  302  4  6  0.001  0.002  KQ  P  1 
9708034E1l 
16  50663.004169  242  101  31  70  0.008  0.019  K  V  6 
9708034E1t 
16  50663.004232  172  426  163  451  0.044  0.123  KPL  P  4 
9708303E2a 
17  50690.778555  1517  495  138  60  0.038  0.016  KQ  P  1 
9708303O2a 
18  50690.670037  128  47  7  5  0.002  0.002  KQ  P  2 
9709031E3a 
19  50694.643972  128  402  53  141  0.014  0.038  KQ  P  1 
9709063O2g 
20  50697.833822  272  454  24  18  0.008  0.006  K  V  6 
9709101O3a 
21  50701.679597  65  81  16  27  0.005  0.009  KQ  P  2 
9709143E1e 
22  50705.741160  88  18  13  24  0.004  0.006  KQ  P  2 
9709153E2a 
23  50706.633011  54  569  71  160  0.019  0.044  KQ  P  1 
9709181O3g 
24  50709.712467  160  75  63  39  0.020  0.012  K  V  6 
9709181E3e 
25  50709.816646  23  267  11  21  0.003  0.006  KQ  P  2 
9709181E3t 
25  50709.816599  71  300  22  46  0.006  0.013  K  V  6 
9709213E1l 
26  50712.856114  821  598  16  19  0.004  0.005  K  V  6 
9709223E2g 
27  50713.793868  189  282  49  106  0.014  0.029  KPL  P  3 
9710074O1t 
28  50728.816855  248  37  37  43  0.011  0.013  KPL  P  4 
9711094O2t 
29  50761.700869  516  373  10  7  0.003  0.002  K  V  6 
9711094O2w 
29  50761.701680  397  796  31  47  0.009  0.013  KPL  P  8 
9711103E1t 
30  50762.739970  1425  2503  262  555  0.072  0.152  KPL  P  4 
9711183O1g 
31  50770.591704  245  248  26  16  0.007  0.004  K  V  6 

Each line in Tables 3 and 4 corresponds to observation of one event by one observer, i.e., refers to one light curve.
Table 3 contains the data required to refine the elements of satellite orbits. Table 4 gives the parameters that allow the accuracy and reliability of results to be assessed. To establish a correspondence between the lines in two tables that refer to the results of the same observation, we give the observation identifier in the first column of each table.
The results of reduction of observations and depend substantially on time t_{0}, which was set equal to one of the observing times near the light minimum of the passive satellite. The sets of observing times for the same event differ from one observatory to another. Therefore and inferred from observations made at different observatories cannot be compared to each other. By contrast, we assume D_{x} and D_{y} to be constant throughout the particular phenomenon as is explained above allowing us to compare D_{x} and D_{y} values inferred from observations performed at different observatories. The discrepancies between values inferred from observations made at different observatories are therefore due to observational errors, thereby providing an external estimate for the latter. Parameters an characterize the internal observational errors.
The accuracy of the photometric observations performed and the
quality of the data obtained can be assessed from graphs
illustrating the agreement between the theory and observations
(Figs. 131). The dots or other symbols show
the satellite flux, S_{i}, corresponding to
the measured photometric count E_{i} and parameters
D_{x}, D_{y}, K, Q,
and L, P obtained from the process of the reduction
of observations using formula
Some light curves were obtained with CCD camera. In this case zero value of satellite flux S corresponds to zero value of E. This make it possible to put . No observation allowed us to determine all the parameters K, Q, P, L together empirically. The more detailed comments to each light curve reduced are in the following subsection.
For each observation Table 4 contains the reference (Fig) to the corresponding figure, the reference (C) to the special comment, and the list (E(S)) of the parameters from the set K, Q, P, L which were really determined. To each observation we assigned a quality index Q. The value P (perfect) of the quality index means that the list of the parameters determined fully corresponds to the method of observation. The value V (vague) shows that the only parameter K could be determined and that real error of the values , may be more important than the estimations , .
Each of following comments is attached to some light curve according to the reference C in Table 4.
Copyright The European Southern Observatory (ESO)