The energy attainable by Fermi acceleration at the external shock
is limited by the requirement that the time to deflect the particle
upstream must be shorter than the age of the fireball. This yields
a maximum value
![]() |
(2) |
Given Galactic magnetic fields, Eq. (2) rules
out the acceleration of UHECRs by repeated shock crossings at the
external blast waves of GRB fireballs. Nonetheless, the initial
boost by a factor could yield UHECRs if there
were relativistic particles of sufficient energy upstream,
as it requires only the time for these particles to be
deflected downstream, where the magnetic field could be
amplified by turbulence. If the seed relativistic particles
are cosmic rays typical of the Galactic ISM, however, this
process is much too inefficient to account for the observed
UHECRs.
Gallant & Achterberg (1998, 1999) instead proposed that in the context of the neutron star binary merger scenario for GRBs (e.g. Narayan et al. 1992), the fireball expands into a pulsar wind bubble blown in the ISM by the progenitor system. Because the energy density of the surrounding medium is then predominantly in the form of relativistic particles, these can be boosted by the blast wave with very high efficiency.
Gallant & Achterberg (1999)
also showed that
for parameters typical of the millisecond pulsars in the neutron star
binaries observed in our Galaxy, the GRB blast wave would decelerate
within the pulsar wind bubble, yielding a spectrum for the boosted particles. Moreover, this spectrum
would typically extend over the energy region
, which is precisely where the UHECR component is
observed.
Acknowledgements
This work was supported by ASTRON project 781-71-050 and by the European Commission under TMR programme contract FMRX-CT98-0168.
Copyright The European Southern Observatory (ESO)