The results for the energy levels, oscillator strengths, and total and partial photoionization cross sections are described in the following sections.
![]() |
Dipole oscillator strengths (f-values) for transitions among
the calculated states of Ni II were obtained in LS coupling. This set
includes transitions for which the lower state lies below the first ionization
threshold and the upper state lies above. These transitions can be important
in opacity calculations because they contribute to the total photo-absorption,
but do not appear as resonances in the photoionization cross sections
(strictly speaking, the upper bound state does autoionize if departure
from LS coupling is considered and fine structure continua are explicitly
allowed).
Comparison of
length and velocity oscillator strengths provides a systematic
consistency check on the
accuracy of the wavefunctions and, therefore, on the
reliability of the f-values. In Fig. 1 we plot vs.
.
We have included all the symmetries since each
exhibits roughly the same dispersion. The dispersion between length and
velocity values is
for gf-values greater than unity and
for gf-values greater than 0.1.
The first experimental determination of Ni II f-values in the VUV was recently reported by Fedchak & Lawler (1999). While this work awaits publication all determinations of Ni II abundance from absorption lines in the diffuse ISM (e.g. Morton 1991; Zsargó & Federman 1998) have been based on theoretical data by Kurucz & Peytremann (1975) and Kurucz & Bell (1995).
Table 3 presents a comparison of the present f-values with the experimental data from Fedchak & Lawler (1999), the recommended values by Fuhr et al. (1988), and those from semiempirical computations of Kurucz & Bell (1995). Notice the recommended data by Fuhr et al. is mostly based on the values of Kurucz & Peytremann adjusted such as the radiative lifetime of the levels agreed with a few experimental measurements. Table 4 compares radiative lifetimes obtained from the present data with those measured by Fedchak & Lawler and calculated using the Kurucz & Bell data.
![]() |
![]() |
The good agreement between length and velocity f-values and the agreement for both absolute f-values and level lifetimes with experimental determinations suggests that the overall uncertainty for such transitions should be near 10%. However, weaker transitions are likely to have greater uncertainties. For weak transitions relativistic effects, not included here, may be important. Similarly, algebraic splitting of the present f-values in LS coupling into fine structure f-values would lead to large errors for relativistic effects are quite important at the fine structure level in Ni II.
Photoionization cross sections were calculated for all bound states.
These cross sections include detailed
autoionization resonances.
Figure 2 shows the
photoionization cross section of the ground state
of Ni II. In
the same figure we have plotted the
results of Verner et al. (1993) and Reilman & Manson (1979),
both using central field type approximations.
One interesting feature in the
present cross section is the packs of large resonances between 1.75 and 2 Ryd
that rise several orders of magnitude above the background.
These resonances result from the coupling of the ground state
(
) with the excited state of the form (
) of the Ni III target.
![]() |
Figure 2:
Photoionization cross section (![]() ![]() |
Figure 3 shows the photoionization cross sections for a few excited states of Ni II.
![]() |
Figure 3:
Photoionization cross section (![]() |
![]() |
Figure 4: Partial photoionization cross sections of the Ni II ground state going into the lowest six states of Ni III |
In addition to the total photoionization cross sections we obtained also partial cross sections for photoionization going into each of the states of the target ion. These cross sections are needed for the computation of recombination rates (Nahar & Pradhan 1995) and in constructing non-LTE spectral models where it may be important to determine accurately the populations of excited levels of the residual ion following photoionization. Figure 4 presents these partial cross sections for the Ni II ground state going into into the lowest six levels of Ni III.
Copyright The European Southern Observatory (ESO)