The aim of the ESO key-program required large wavelength range to allow to
detect possible peculiarities, a 20000 minimum resolution for
vsini, ,
and metallicity determinations and an
accessible instrumentation several times a year.
These conditions were met by the Echelec Spectrograph equipped with a
CCD camera at the 1.52m ESO telescope at La Silla.
Priority was given to radial velocities determinations.
The initial program of B8-F2 stars nearer than 100pc changed with time,
the lack of transparency of the instrumentation not allowing the observation
of stars fainter than V magnitude 7.5.
So the number of F-type stars was reduced and priority was given to early
A-type stars. Reference stars were observed for the different researched
parameters.
Some supergiants were added to obtain their vsini.
We observed, only once, stars for the obtention of vsini and twice for
radial velocity. Meanwhile it appeared interesting to determine radial
velocity for the whole sample, even when there was one observation only.
Keeping in mind that Hipparcos Catalogue is complete until V
magnitude 7.5, it
contains 3545 south normal stars from B8 to F2 and V < 7.5, 58% of which
being A-type, and 39% having a radial velocity now.
As a result, 610 stars were observed during 21 observation runs, from June 1989
to January 1995, 581 being in the range B8 to F2 type, 41% of which having
two or more measurements.
The ESO Echelec spectrograph was used at the coudé focus of
the 1.52 m telescope at La Silla (Chile). The 9 central orders around
=4350Å were used. They covered the spectral
range 4210 to 4500Å.
The dispersion was 3.1Åmm-1.
The detector was a RCA CCD with 640
1024 pixels of
15
15
, the pixel size corresponding to 0
65 on the sky.
The nominal spectrograph resolution was about 70000.
The characteristics are described in detail in Gilliotte & Lindgren (1989).
Using a slit width of 320
m (1
5 on the sky),
the instrumental resolving power was degraded to 28000 and the ratio S/N,
highly variable from the center to the edges of each order covered the range
50 to 200.
The reduction from a CCD image to a complete linear spectrum
(calibration frames, orders extraction, wavelength calibration,
connection of the orders)
is described with details by Burnage & Gerbaldi (1990, 1992).
A cross-correlation method with synthetic spectra was chosen
to determine radial velocities.
This method, described by Tonry & Davis (1979), to determine galaxy redshifts
was since used by several authors for late-type stars, but not often for
early-type stars.
Main difficulties in A-type stars come from the small number of lines and
the fact that the H line
covers most of the spectral range of the spectra at our disposal.
It would contribute far too much
in the computation of a correlation index with respect to the faint
metallic lines more or less washed out by the high projected rotational
velocity of most stars. In order to use metallic lines only, a
pseudonormalised spectrum has been computed whose continuum follows the
profile of H
. So the correlation was independent of this line.
A programme of automatic normalisation has been elaborated and applied.
Synthetic spectra have several advantages compared to actual stellar
spectra for the use as templates:
they are perfectly adapted to the linear response of CCD detector;
they are noise-free; their radial velocity is zero and they allow to
compute an homogeneous and regular grid of reference spectra.
They do not incorporate the instrumental profile, whose influence is negligible
on the spectra of these mean-high rotating stars.
They were computed with Kurucz (1993) models.
The range of was 6000 to 15000K,
logg=4.0 and metallicity solar (justified by the sample
of normal stars) and
lines were widened by rotation with a path of 25kms-1.
The resolution of synthetic spectra was adapted to the observed spectra
(same step and start).
As to avoid the differential dispersion
due to the radial velocity, all spectra were rebinned in Naperian logarithms.
All reduction programs were built into the MIDAS environment. Systematically the correlation program identified the synthetic spectrum giving the best correlation index (see the description of the grid of the synthetic spectrum in the Sect. 3.1). This method allowed to test the spectral types and rotation velocities found in the literature. Discrepancies came from binaries generally. The range of correlation index varied from 0.5 to 0.95 in most cases. The maximum of the cross-correlation function which was usually quasi Gaussian was estimated by fitting its peak with a parabola.
The independence of obtained radial velocities with the spectral type was tested using the homogeneous radial velocities of B to F type stars from Andersen & Nordström (1983) and Nordström & Andersen (1985) (see the comparison in the Sect. 3.3).
Generally the correlation peak is symmetric and roughly Gaussian.
Nevertheless some of them were double, asymmetric or not Gaussian and
their interpretation was not obvious.
To detect an eventual asymmetry, each peak was fitted with a Gaussian
profile and a new radial velocity was calculated (the parabola only
fits the top of the peak whereas the Gaussian fits the whole profile).
The difference of this new radial velocity with the value
obtained with a parabola was computed.
Several cases, function of the shape of peaks, are considered.
Separated peaks of binaries are listed in Table7 with a and b components.
Some radial velocities were considered as not significant:
when the correlation coefficient was lower than 0.3 or when the peak was too
asymmetric (detected by a Chi-Square test upon
).
The Hipparcos (HIP) and HD numbers of these stars are listed in Table5.
Symmetric but wide peaks could mask a binary system.
To analyse the shape of some peaks, simulations of binary and triple systems
were made with synthetic spectra.
In the simulations, the input parameters were and rotation
broadening of components, their radial velocities difference and the ratio
of their intrinsic luminosities. It was not possible to do this
simulation for each peak but this has allowed to recognize characterized
shapes of binary peaks.
With the aim of detecting a possible double or multiple system, hidden by
rotation, all spectra were correlated with the minimum rotation available in
our grid of synthetic spectra.
A number ranging from 0 to 10 refers to the shape of the corresponding
correlation curve in Tables8 and 9.
The meaning of this flag is summarized in Table4.
The agreement between
and rotation broadening of synthetic spectra
found for the different observed spectra of a same star is considered:
in 79% stars these parameters are the same.
For the others, 13% show a
duplicity criterion and in the remaining 8% the real values are between
the two found values, probably.
Copyright The European Southern Observatory (ESO)