next previous
Up: Present performance of the coronagraph


Appendix

A formalism is exposed in Wynne (1979), but an easier derivation is possible. We have the following wavelength dependent relationships (according to the notation of Fig. 2):

Basically, the diameter of the Airy disk is:
\begin{displaymath}
y'(\lambda) = \frac{1.22 \lambda}{2 u'(\lambda)}\cdot\end{displaymath} (3)
The Lagrange invariant is:
\begin{displaymath}
y. u = y'(\lambda) . u'(\lambda) .\end{displaymath} (4)
The Wynne correctors make the exit pupil chromatic and allow the approximation: $u'(\lambda) = a \lambda$. a is a constant determined at $\lambda_0$ where the correctors do not have any effect:
\begin{displaymath}
a = \frac{u'}{\lambda_0} = u \frac{y}{y'} \frac{1}{\lambda_0} = \frac{u}{\gamma} 
\frac{1}{\lambda_0}\end{displaymath} (5)
$\gamma$ is the magnification induced by the achromatic doublets:
\begin{displaymath}
\gamma = \frac{y'}{y} = \frac{f_2}{f_1}\end{displaymath} (6)
hence:
\begin{displaymath}
u'(\lambda) = \frac{u}{\gamma} \frac{\lambda}{\lambda_0}\end{displaymath} (7)
and:
\begin{displaymath}
y'(\lambda)=1.22\frac{\lambda_0 \gamma}{2 u} \cdot\end{displaymath} (8)
The Airy disk diameter no longer depends on wavelength.

  
\begin{figure}
\epsfxsize=8cm
\epsfbox {d7614_11.ps}\end{figure} Figure 6: Final radial chromatism on the detector (f/976) calculated from a numerical simulation, after correction by the Wynne triplets, for 2 different locations in the field (solid line $\theta=0.03\hbox{$^\circ$}$, dashed line $\theta=0.06\hbox{$^\circ$}$)

next previous
Up: Present performance of the coronagraph

Copyright The European Southern Observatory (ESO)