For extraction of excess IR fluxes we scale an appropriate model spectrum to some point in the range of photometric data that we believe is unaffected by radiation from the companion. We always pick the point at which we do the normalization as redward as possible since picking a point far into the UV range can lead to practical problems if the far-UV flux is heavily depressed by metal opacities. Usually this depression is most severe on the blue side of 2000 Å. The excess in any band, but in particular the JH and K bands is then simply calculated by subtraction of the normalized model flux from the observations. We use the Kurucz (1993) grid of metal-line blanketed model spectra distributed on CD-ROM disks.
Using Kurucz models has obvious advantages over the simple BB analysis of Paper I. However, it also poses two main drawbacks to our study, as follows: i) the maximum effective temperature available is 50000 K; and ii) no He-rich models are available. Both have an impact on our conclusions regarding the claim of excesses (see Table 7) and must be kept in mind when dealing with their interpretation, specially among the hottest O type sds: BD+28 4211, PG2102+037, PG2158+082 and PG2352+181. However, none of these four met the 2 requirement to be analysed for excess.
From the February, 1994, data the following sdO objects had already been found
as binary candidates in Paper I: BD+10 2357, Feige 34, Feige 80, GD 299,
HD113001 and HD 128220. But constraints i) and ii) may lessen the now newly
discovered excesses for BD+37 1977 and BD+48 1777.
On the other hand and in general, where the excesses mainly rest, at the longer wavelengths, for both i) and ii) the impact is the least, as already argued in Paper I.
In converting observed magnitudes into physical absolute fluxes we use the
zero-point definitions tabulated by Zombeck (1990) for the UBVRI and JHK
data, while we used Oke & Gunn (1983) for Greenstein multichannel data and
Table 7 (first column) in Heber et al.(1984) for uvby data (see Paper I).
In Table 7 we list the extracted J flux for
stars with at least 2
significant excesses (in JHK simultaneously),
and also the calculated J-H and J-K colors of the excesses.
Using the Bessel & Brett (1988) tables of J-H and J-K colors we estimate the range of dwarf spectral classes that correspond to the extracted excess colours. These too are shown in Table 7.
|
We next derive companion classes for the hot subdwarf by fitting a weighted sum of two model spectra (using Kurucz (1993) models) to the collected and observed photometric data. The fitted weights are proportional to the areas of the stars, so after a successful fit the weight ratio is proportional to the ratio of stellar radii squared. The fit also gives the temperature of the best-fitting cool model. The results are shown in Table 8.
The fitting procedure is a least- method and in principle
tests the fit of all Kurucz (1993) models against all other
models in the grid. In practise we restrict the range of the models
to fit since it is prohibitively time-consuming to fit all 3576 Kurucz
models against each other - see the caption of the table. The hot
model should not be chosen freely as some stars have very
accurate atmospheric parameters from the literature and we do not wish
to stray far from these values - this is a complicated process as some
stars have lots of published photometric data, the fitting of which
agrees well with literature values, while other stars have little
observed data to work with but may have atmospheric parameters based on
spectroscopy, while yet other stars have neither good photometric data
nor published atmospheric parameters but only a simple estimate of the
spectral type from the literature - frequently based on visual
inspections of low dispersion spectra during some classification
project.
In a few cases (Feige 80 and GD 299), this method yields a best fit Kurucz effective temperature for the hot component discrepant from previous literature determinations.
![]() |
Figure 2: Comparison of companion types determined by two methods. Along the horizontal axis is plotted the limits on spectral class that can be inferred from the extracted J-H and J-K colours and the Bessel & Brett (1988) tables for real stars, while the vertical axis displays the spectral type inferred from fits of Kurucz model spectra |
In Fig. 2 we compare the dwarf class inferred from
extracted colors (Table 7) and fitted models
(Table 8). We see that the agreement is quite fair although not complete. Of the 28 stars that had companion-type estimates from
both methods, we used 21 stars that have limits on the Bessel & Brett class - i.e., according to notation in Table 7 no "vl"
or "X" ones were included. Of these, only BD+29 3070 deviates by more than one spectral class.
The conclusion we can draw from this comparison of derived log(g) limits is that we appear to have 2 methods that are able, when the data is good, to jointly find the spectral type of the companion to within one class in about 75% of all cases.
![]() |
Copyright The European Southern Observatory (ESO)