next previous
Up: Expansions for nearly Gaussian


Appendix A: Lemma

 In Sect. 5, the relation (30) for the n-th derivative of a composite function $f\!\circ\! g(x) \equiv f(g(x))$ is used for the derivation of the Edgeworth asymptotic expansion. Here a simplified derivation of Eq. (30) is given. Petrov (1972, 1987) suggests a proof by induction. We note that this derivation is more transparent if one simply considers the Taylor expansion for $f\!\circ\! g$ expressed in terms of the Taylor expansions of f and g - see Bourbaki (1958). We have  
 \begin{displaymath}
f(y) = f(y_0) + {f'\over 1!}\Delta y +
 {f''\over 2!}\Delta^2 y+ \cdots
 {f^{(n)} \over n!}\Delta^n y+ \cdots \; 
 \end{displaymath} (A1)
and  
 \begin{displaymath}
g(x) = g(x_0) + {g'\over 1!}\Delta x +
 {g''\over 2!}\Delta^2 x+ \cdots
 {g^{(m)} \over m!}\Delta^m x+ \cdots \; .
 \end{displaymath} (A2)
Truncating the expansions at some n and m we find that
   \begin{eqnarray}
\lefteqn{ f\!\circ\! g(x) = f(g(x_0)) } \nonumber \\  \lefteqn{...
 ...
 {g^{(m)} \over m!}\Delta^m x+ \cdots \right)^n \; .} \nonumber
 \end{eqnarray}
(A3)
On the other hand, we can write down the Taylor series for the composite function,
   \begin{eqnarray}
\lefteqn{ f\!\circ\! g(x) = f\!\circ\! g(x_0)} \nonumber \\  \l...
 ...2 x+ \cdots
 {(f\!\circ\! g)^{(s)} \over s!}\Delta^s x+ \cdots }
 \end{eqnarray}
(A4)
Now using the polynomial theorem,
   \begin{eqnarray}
\lefteqn{ (x_1+x_2+\cdots+x_m)^r } \nonumber \\  \lefteqn{\quad...
 ...= \sum_{\{k_m\}} r!\prod_{s=1}^m {x_s^{k_s} \over k_s!} 
 \; , }
 \end{eqnarray}
(A5)
where summation extends over all sets of non-negative integers $\{k_m\}$satisfying r=k1+k2+ ... +ks, and comparing the terms $\Delta^{s}x$ with equal s in (A4) and (A4), we obtain
   \begin{eqnarray}
\lefteqn{ {{\rm d}^s \over {\rm d}x^s} f(g(x)) = } \nonumber \\...
 ...{1 \over k_m!}
 \left({1 \over m!} g^{(m)}(x)\right)^{k_m} \; .}
 \end{eqnarray}
(A6)
This is the relation (30) which we sought. Here the set $\{k_m\}$ consists of non-negative solutions of the Diophantine equation  
 \begin{displaymath}
k_1+2k_2+ ... +s k_s=s \; ,
 \end{displaymath} (A7)
and r=k1+k2+ ... +ks.


next previous
Up: Expansions for nearly Gaussian

Copyright The European Southern Observatory (ESO)