next previous
Up: Near infrared photometry

4. Results

4.1. Near infrared photometry of the unidentified IRAS sources in the sample

In Tables 3 (click here)a to g we show the photometric magnitudes of the 225 IRAS sources measured in the near infrared, together with the estimated associated errors and a number indicating the run in which the source was observed, according to the list given in Table  1 (click here). Letters A and B, following the IRAS name, indicate that two near infrared counterparts were found equidistant to the nominal IRAS position. In addition, in Table  4 (click here), we list the IRAS names of the 42 sources not detected in the K band. Although in many cases they are associated with the faintest sources in our sample showing the lower fluxes at tex2html_wrap_inline2845, some of them were detected at a different epoch with a K magnitude well above the detection limit, which may indicate a strong variability. As we can see, there is a high percentage of positive detections, around 80%, which confirms the validity of the method of observation used.

 

 

IRAS name J H K L' M Run Other measurements
00422+6131 tex2html_wrap_inline2861 tex2html_wrap_inline2863 tex2html_wrap_inline2865 - - (9)
00470+6130 tex2html_wrap_inline2869 tex2html_wrap_inline2871 tex2html_wrap_inline2873 - - (9)
02143+5852 tex2html_wrap_inline2877 tex2html_wrap_inline2879 tex2html_wrap_inline2881 - - (9) 1
02395+6244 tex2html_wrap_inline2885 tex2html_wrap_inline2887 tex2html_wrap_inline2889 - - (9)
02528+4350 tex2html_wrap_inline2893 tex2html_wrap_inline2895 tex2html_wrap_inline2897 - - (9) 1
03578+3134 tex2html_wrap_inline2901 tex2html_wrap_inline2903 tex2html_wrap_inline2905 - - (9)2
04010+5118 tex2html_wrap_inline2909 tex2html_wrap_inline2911 tex2html_wrap_inline2913 - - (9)
04101+3103 tex2html_wrap_inline2917 tex2html_wrap_inline2919 tex2html_wrap_inline2921 - - (2) 2
tex2html_wrap_inline2923 tex2html_wrap_inline2925 tex2html_wrap_inline2927 - - (9)
04185+2022 tex2html_wrap_inline2931 tex2html_wrap_inline2933 tex2html_wrap_inline2935 - - (9) 2
04189+2650 tex2html_wrap_inline2939 tex2html_wrap_inline2941 tex2html_wrap_inline2943 - - (9)
04296+3429 tex2html_wrap_inline2947 tex2html_wrap_inline2949 tex2html_wrap_inline2951 - - (8) 1, 3
04302+4425 tex2html_wrap_inline2955 tex2html_wrap_inline2957 tex2html_wrap_inline2959 - - (8) 1
tex2html_wrap_inline2961 tex2html_wrap_inline2963 tex2html_wrap_inline2965 - - (9)
05113+1347 tex2html_wrap_inline2969 tex2html_wrap_inline2971 tex2html_wrap_inline2973 tex2html_wrap_inline2975 - (9) 4, 5
05209+2454 tex2html_wrap_inline2979 tex2html_wrap_inline2981 tex2html_wrap_inline2983 - - (9)
05238-0626 tex2html_wrap_inline2987 tex2html_wrap_inline2989 tex2html_wrap_inline2991 - - (9) 6
05284+1945 - tex2html_wrap_inline2995 tex2html_wrap_inline2997 - - (8)
05341+0852 tex2html_wrap_inline3001 tex2html_wrap_inline3003 tex2html_wrap_inline3005 - - (8) 1, 6
tex2html_wrap_inline3007 tex2html_wrap_inline3009 tex2html_wrap_inline3011 - - (9)
05355-0117 tex2html_wrap_inline2941 tex2html_wrap_inline3017 tex2html_wrap_inline3019 - - (9)
05471+2351 tex2html_wrap_inline3023 tex2html_wrap_inline3025 tex2html_wrap_inline3027 - - (9) 7
05573+3156 tex2html_wrap_inline3031 tex2html_wrap_inline3033 tex2html_wrap_inline3035 - - (3)
tex2html_wrap_inline2885 tex2html_wrap_inline3039 tex2html_wrap_inline3041 - - (9)
05591+1630 tex2html_wrap_inline3045 tex2html_wrap_inline3047 tex2html_wrap_inline3049 - - (9) 8
06013-1452 tex2html_wrap_inline3053 tex2html_wrap_inline3055 tex2html_wrap_inline3057 tex2html_wrap_inline3059 - (6)
tex2html_wrap_inline3061 tex2html_wrap_inline3063 tex2html_wrap_inline3065 - - (9)
06464-1644 tex2html_wrap_inline3069 tex2html_wrap_inline3071 tex2html_wrap_inline3073 - - (9) 6
06499+0145 tex2html_wrap_inline3077 tex2html_wrap_inline3079 tex2html_wrap_inline3081 - - (2)
06518-1041 tex2html_wrap_inline3085 tex2html_wrap_inline2861 tex2html_wrap_inline3089 - - (3) 4
tex2html_wrap_inline3091 tex2html_wrap_inline2931 tex2html_wrap_inline3095 - - (9)
06530-0213 tex2html_wrap_inline3099 tex2html_wrap_inline3101 tex2html_wrap_inline3103 - - (2) 9
06549-2330 tex2html_wrap_inline3107 tex2html_wrap_inline3109 tex2html_wrap_inline3111 - - (3)
06556+1623 tex2html_wrap_inline3115 tex2html_wrap_inline3117 tex2html_wrap_inline3119 - - (9) 4, 7
06562-0337 tex2html_wrap_inline3123 tex2html_wrap_inline3125 tex2html_wrap_inline3127 - - (3) 1, 10
tex2html_wrap_inline3129 tex2html_wrap_inline3131 tex2html_wrap_inline3133 tex2html_wrap_inline3135 - (6)
tex2html_wrap_inline3137 tex2html_wrap_inline3139 tex2html_wrap_inline3141 - - (9)
07027-7934 tex2html_wrap_inline3145 tex2html_wrap_inline3147 tex2html_wrap_inline3149 tex2html_wrap_inline3151 tex2html_wrap_inline3153 (4) 11, 12
07227-1320 tex2html_wrap_inline3157 tex2html_wrap_inline3159 tex2html_wrap_inline3161 tex2html_wrap_inline3163 - (4)
Table 3: a) Observed magnitudes

 

IRAS name J H K L' M Run Other measurements
07280-1829 tex2html_wrap_inline3177 tex2html_wrap_inline3179 tex2html_wrap_inline3181 - - (2)
07330-2332 tex2html_wrap_inline3185 tex2html_wrap_inline3187 tex2html_wrap_inline3189 - - (9)
07399-1435 tex2html_wrap_inline3193 tex2html_wrap_inline3195 tex2html_wrap_inline3197 - - (9) 13, 14
07430+1115 tex2html_wrap_inline3201 tex2html_wrap_inline3203 tex2html_wrap_inline3205 - - (9)
07582-4059 tex2html_wrap_inline3209 tex2html_wrap_inline3211 tex2html_wrap_inline3213 - - (6) 9
08057-3417 tex2html_wrap_inline3217 tex2html_wrap_inline3219 tex2html_wrap_inline3221 tex2html_wrap_inline3223 - (6)
08131-4432 tex2html_wrap_inline3227 tex2html_wrap_inline3229 tex2html_wrap_inline2905 tex2html_wrap_inline3233 - (4)
08143-4406 tex2html_wrap_inline3237 tex2html_wrap_inline3239 tex2html_wrap_inline3241 tex2html_wrap_inline3243 - (4)
08189+5314 tex2html_wrap_inline3247 tex2html_wrap_inline3249 tex2html_wrap_inline3251 - - (9) 15
08213-3857 tex2html_wrap_inline2991 tex2html_wrap_inline3257 tex2html_wrap_inline3259 tex2html_wrap_inline3261 tex2html_wrap_inline3263 (4)
08229-4051 tex2html_wrap_inline3267 tex2html_wrap_inline3269 tex2html_wrap_inline3271 - - (6)
08242-3828 tex2html_wrap_inline3275 tex2html_wrap_inline3277 tex2html_wrap_inline3279 tex2html_wrap_inline3281 tex2html_wrap_inline3283 (4)
08275-6206 tex2html_wrap_inline2927 tex2html_wrap_inline3289 tex2html_wrap_inline3291 tex2html_wrap_inline3293 - (6)
08281-4850 tex2html_wrap_inline3297 tex2html_wrap_inline3299 tex2html_wrap_inline3301 - - (6)
08351-4634 tex2html_wrap_inline3305 tex2html_wrap_inline3307 tex2html_wrap_inline3309 - - (6)
08355-4027 tex2html_wrap_inline3313 tex2html_wrap_inline3315 tex2html_wrap_inline3317 - - (4)
tex2html_wrap_inline3319 tex2html_wrap_inline3321 tex2html_wrap_inline3323 - - (6)
08425-5116 tex2html_wrap_inline3327 tex2html_wrap_inline3329 tex2html_wrap_inline3331 tex2html_wrap_inline3333 tex2html_wrap_inline3335 (6) 6
08470-4321 tex2html_wrap_inline3339 tex2html_wrap_inline3341 tex2html_wrap_inline2969 tex2html_wrap_inline3345 tex2html_wrap_inline3347 (4) 16, 17, 18
09024-5019 tex2html_wrap_inline3351 tex2html_wrap_inline3353 tex2html_wrap_inline3355 - - (6)
09119-5150 tex2html_wrap_inline3359 tex2html_wrap_inline3361 tex2html_wrap_inline3363 - - (6)
09362-5413 tex2html_wrap_inline3367 tex2html_wrap_inline3369 tex2html_wrap_inline3371 - - (6)
09425-6040 tex2html_wrap_inline3375 tex2html_wrap_inline3377 tex2html_wrap_inline3379 tex2html_wrap_inline3381 tex2html_wrap_inline3383 (4) 12
tex2html_wrap_inline3385 tex2html_wrap_inline3387 tex2html_wrap_inline3389 tex2html_wrap_inline3391 tex2html_wrap_inline3393 (6)
10029-5553 tex2html_wrap_inline3397 tex2html_wrap_inline3399 tex2html_wrap_inline3189 - - (4) 9
10115-5640 tex2html_wrap_inline3405 tex2html_wrap_inline3407 tex2html_wrap_inline3409 - - (6)
10178-5958 tex2html_wrap_inline3413 tex2html_wrap_inline3415 tex2html_wrap_inline3417 tex2html_wrap_inline3419 tex2html_wrap_inline3421 (4) 19
10197-5750 tex2html_wrap_inline3237 tex2html_wrap_inline3427 tex2html_wrap_inline3429 tex2html_wrap_inline3431 tex2html_wrap_inline3433 (4) 14
10215-5916 tex2html_wrap_inline3437 tex2html_wrap_inline3439 tex2html_wrap_inline3441 tex2html_wrap_inline3443 tex2html_wrap_inline3445 (4) 20
10256-5628 tex2html_wrap_inline3449 tex2html_wrap_inline3451 tex2html_wrap_inline3453 tex2html_wrap_inline3455 - (4)
10348-6320 tex2html_wrap_inline3459 tex2html_wrap_inline3461 tex2html_wrap_inline3463 - - (7)
11065-6026 tex2html_wrap_inline3467 tex2html_wrap_inline3469 tex2html_wrap_inline3471 tex2html_wrap_inline3473 tex2html_wrap_inline3475 (4) 21
SAO 239162 tex2html_wrap_inline3479 tex2html_wrap_inline3481 tex2html_wrap_inline3483 tex2html_wrap_inline3485 tex2html_wrap_inline3487 (4) 12
SAO 251457 tex2html_wrap_inline3491 tex2html_wrap_inline3493 tex2html_wrap_inline3495 tex2html_wrap_inline3497 tex2html_wrap_inline3499 (6) 12, 22
11339-6004 tex2html_wrap_inline3503 tex2html_wrap_inline3505 tex2html_wrap_inline3507 - - (7) 9
11387-6113 tex2html_wrap_inline3511 tex2html_wrap_inline3513 tex2html_wrap_inline3515 tex2html_wrap_inline3455 - (4)
11415-6541 tex2html_wrap_inline3521 tex2html_wrap_inline3523 tex2html_wrap_inline3525 - - (7)
11438-6330 - - tex2html_wrap_inline3529 tex2html_wrap_inline3531 tex2html_wrap_inline3533 (4) 14, 23
- tex2html_wrap_inline3535 tex2html_wrap_inline3537 tex2html_wrap_inline3539 tex2html_wrap_inline3541 (6)
Table 3: b) Observed magnitudes

 

IRAS name J H K L' M Run Other measurements
11444-6150 tex2html_wrap_inline3269 tex2html_wrap_inline3557 tex2html_wrap_inline3559 - - (7)
SAO 223245 tex2html_wrap_inline3563 tex2html_wrap_inline3565 tex2html_wrap_inline3567 tex2html_wrap_inline3569 tex2html_wrap_inline3571 (6) 24, 25
12158-6443 tex2html_wrap_inline3575 tex2html_wrap_inline3133 tex2html_wrap_inline3579 - - (7)
SAO 239853 tex2html_wrap_inline3583 tex2html_wrap_inline3149 tex2html_wrap_inline3587 tex2html_wrap_inline3589 - (4) 12, 20
12358-6323 tex2html_wrap_inline3593 tex2html_wrap_inline3595 tex2html_wrap_inline3597 - - (4)
tex2html_wrap_inline3599 tex2html_wrap_inline3601 tex2html_wrap_inline3603 tex2html_wrap_inline3605 tex2html_wrap_inline3607 (6) 9
12360-5740 tex2html_wrap_inline3611 tex2html_wrap_inline3613 tex2html_wrap_inline3133 - - (7)
13110-6629 tex2html_wrap_inline3619 tex2html_wrap_inline3621 tex2html_wrap_inline3247 tex2html_wrap_inline3625 - (4)
13203-5917 tex2html_wrap_inline3559 tex2html_wrap_inline3631 tex2html_wrap_inline3633 - - (6)
13245-5036 tex2html_wrap_inline3637 tex2html_wrap_inline3639 tex2html_wrap_inline3641 - - (6)
13266-5551 tex2html_wrap_inline3645 tex2html_wrap_inline3647 tex2html_wrap_inline3559 tex2html_wrap_inline3651 - (4) 12
13356-6249 tex2html_wrap_inline3655 tex2html_wrap_inline3657 tex2html_wrap_inline3659 tex2html_wrap_inline3661 tex2html_wrap_inline3663 (4)
13421-6125 tex2html_wrap_inline3667 tex2html_wrap_inline3669 tex2html_wrap_inline3671 - - (4)
tex2html_wrap_inline3673 tex2html_wrap_inline3675 tex2html_wrap_inline3677 - - (6)
13427-6531 - - tex2html_wrap_inline3681 - - (6)
13428-6233 tex2html_wrap_inline3685 tex2html_wrap_inline3687 tex2html_wrap_inline2991 tex2html_wrap_inline3691 tex2html_wrap_inline3693 (4) 26
tex2html_wrap_inline3695 tex2html_wrap_inline3697 tex2html_wrap_inline3699 tex2html_wrap_inline3701 tex2html_wrap_inline3663 (6)
13500-6106 tex2html_wrap_inline3707 tex2html_wrap_inline3709 tex2html_wrap_inline3711 - - (7)
14079-6402 tex2html_wrap_inline3449 tex2html_wrap_inline3717 tex2html_wrap_inline3117 tex2html_wrap_inline3721 - (7) 27
14104-5819 tex2html_wrap_inline3725 tex2html_wrap_inline3727 tex2html_wrap_inline3729 - - (4)
tex2html_wrap_inline3731 tex2html_wrap_inline3727 tex2html_wrap_inline3735 tex2html_wrap_inline3737 - (7)
14122-5947 tex2html_wrap_inline3741 tex2html_wrap_inline3743 tex2html_wrap_inline3745 tex2html_wrap_inline3747 tex2html_wrap_inline3749 (6) 9
14177-5824 tex2html_wrap_inline3753 tex2html_wrap_inline3045 tex2html_wrap_inline3757 tex2html_wrap_inline3759 tex2html_wrap_inline3761 (4)
14247-6148 tex2html_wrap_inline3765 tex2html_wrap_inline3525 tex2html_wrap_inline3769 tex2html_wrap_inline3771 tex2html_wrap_inline3773 (7)
14331-6435 tex2html_wrap_inline3777 tex2html_wrap_inline3779 tex2html_wrap_inline3781 - - (4)
14562-5637 tex2html_wrap_inline3785 tex2html_wrap_inline3787 tex2html_wrap_inline3789 - - (7)
15066-5532 tex2html_wrap_inline3793 tex2html_wrap_inline3795 tex2html_wrap_inline3797 tex2html_wrap_inline3799 - (4)
15103-5754 - tex2html_wrap_inline3803 tex2html_wrap_inline3805 tex2html_wrap_inline3807 - (4)
tex2html_wrap_inline3809 tex2html_wrap_inline3811 tex2html_wrap_inline3813 tex2html_wrap_inline3815 tex2html_wrap_inline3817 (7)
15154-5258 tex2html_wrap_inline3821 tex2html_wrap_inline3823 tex2html_wrap_inline3825 - - (6)
15406-4946 tex2html_wrap_inline3829 tex2html_wrap_inline3479 tex2html_wrap_inline3833 tex2html_wrap_inline3835 tex2html_wrap_inline3837 (4)
15408-5413 tex2html_wrap_inline3047 tex2html_wrap_inline3843 tex2html_wrap_inline3845 tex2html_wrap_inline3847 tex2html_wrap_inline3849 (4) 23, 28, 29, 30
15514-5323 tex2html_wrap_inline3853 tex2html_wrap_inline3855 tex2html_wrap_inline3857 - - (7) 16
15553-5230 tex2html_wrap_inline3861 tex2html_wrap_inline3863 tex2html_wrap_inline3865 tex2html_wrap_inline3867 tex2html_wrap_inline3869 (6)
16342-3814 tex2html_wrap_inline3873 tex2html_wrap_inline3427 tex2html_wrap_inline3877 tex2html_wrap_inline3879 tex2html_wrap_inline3881 (4) 12, 26
16552-3050 tex2html_wrap_inline3885 tex2html_wrap_inline3887 tex2html_wrap_inline3889 - - (5) 9
16594-4656 tex2html_wrap_inline3893 tex2html_wrap_inline3895 tex2html_wrap_inline3897 tex2html_wrap_inline3899 tex2html_wrap_inline3901 (4) 26
Table 3: c) Observed magnitudes

 

IRAS name J H K L' M Run Other measurements
17009-4154 tex2html_wrap_inline3313 tex2html_wrap_inline3917 tex2html_wrap_inline3919 tex2html_wrap_inline3921 tex2html_wrap_inline3923 (4)
tex2html_wrap_inline2995 tex2html_wrap_inline3927 tex2html_wrap_inline3929 tex2html_wrap_inline3931 tex2html_wrap_inline3933 (7)
17021-3054 tex2html_wrap_inline3937 tex2html_wrap_inline3939 tex2html_wrap_inline2897 - - (4)
17055-3753 tex2html_wrap_inline3945 tex2html_wrap_inline2935 tex2html_wrap_inline3611 - - (4)
17067-3759 tex2html_wrap_inline3953 tex2html_wrap_inline3955 tex2html_wrap_inline3537 tex2html_wrap_inline3959 - (4)
17074-1845 tex2html_wrap_inline3963 tex2html_wrap_inline3965 tex2html_wrap_inline3967 - - (1)
17088-4221 tex2html_wrap_inline3971 tex2html_wrap_inline3973 tex2html_wrap_inline3975 tex2html_wrap_inline3977 - (4) 26, 31
SAO 208540 tex2html_wrap_inline3981 tex2html_wrap_inline3983 tex2html_wrap_inline3985 tex2html_wrap_inline3987 - (4) 26
17106-3046 tex2html_wrap_inline3991 tex2html_wrap_inline3993 tex2html_wrap_inline3583 tex2html_wrap_inline3997 - (4)
SAO 244567 tex2html_wrap_inline4001 tex2html_wrap_inline4003 tex2html_wrap_inline4005 - - (4)
17130-4029 tex2html_wrap_inline4009 tex2html_wrap_inline4011 tex2html_wrap_inline4013 - - (4)
17149-3053 tex2html_wrap_inline4017 tex2html_wrap_inline4019 tex2html_wrap_inline4021 - - (1)
17150-3224 tex2html_wrap_inline4025 tex2html_wrap_inline4027 tex2html_wrap_inline4029 tex2html_wrap_inline4031 tex2html_wrap_inline4033 (4) 26, 32
17153-3814 tex2html_wrap_inline4037 tex2html_wrap_inline4039 tex2html_wrap_inline4041 tex2html_wrap_inline4043 - (4)
17164-3226 tex2html_wrap_inline4047 tex2html_wrap_inline4049 tex2html_wrap_inline4051 - - (4)
17168-3736 tex2html_wrap_inline4055 tex2html_wrap_inline4057 tex2html_wrap_inline4059 tex2html_wrap_inline3455 - (4) 31
 17223-2659A tex2html_wrap_inline4065 tex2html_wrap_inline4067 tex2html_wrap_inline4069 - - (1)
 17223-2659B tex2html_wrap_inline4073 tex2html_wrap_inline4075 tex2html_wrap_inline4077 - - (1)
17234-4008 tex2html_wrap_inline3887 tex2html_wrap_inline4083 tex2html_wrap_inline4085 - - (4)
17242-3859 tex2html_wrap_inline4089 tex2html_wrap_inline4091 tex2html_wrap_inline4093 - - (7)
17245-3951 tex2html_wrap_inline4097 tex2html_wrap_inline3595 tex2html_wrap_inline4101 - - (4)
17269-2235 tex2html_wrap_inline4105 tex2html_wrap_inline4107 tex2html_wrap_inline3647 - - (5)
17287-3443 tex2html_wrap_inline4113 tex2html_wrap_inline4115 tex2html_wrap_inline4117 tex2html_wrap_inline3997 - (4)
17291-2402 tex2html_wrap_inline4123 tex2html_wrap_inline4125 tex2html_wrap_inline3829 - - (5) 4
17311-4924 tex2html_wrap_inline3055 tex2html_wrap_inline4133 tex2html_wrap_inline4135 tex2html_wrap_inline4137 - (4) 12, 26
17316-3523 tex2html_wrap_inline4141 tex2html_wrap_inline4143 tex2html_wrap_inline4145 - - (4)
17317-3331 tex2html_wrap_inline4149 tex2html_wrap_inline4151 tex2html_wrap_inline4153 tex2html_wrap_inline4155 tex2html_wrap_inline3761 (4) 28, 30, 31, 33, 34
17317-2743 tex2html_wrap_inline4161 tex2html_wrap_inline4163 tex2html_wrap_inline4165 - - (1)
17332-2215 tex2html_wrap_inline4169 tex2html_wrap_inline3991 tex2html_wrap_inline4173 - - (5)
17347-3139 tex2html_wrap_inline4177 tex2html_wrap_inline4179 tex2html_wrap_inline4181 - - (1) 26
tex2html_wrap_inline4183 tex2html_wrap_inline4185 - - - (7)
17348-2906 tex2html_wrap_inline4189 tex2html_wrap_inline4191 tex2html_wrap_inline4193 - - (5)
17360-2142 tex2html_wrap_inline4197 tex2html_wrap_inline3147 tex2html_wrap_inline4201 - - (3)
17393-2727 tex2html_wrap_inline4205 tex2html_wrap_inline3895 tex2html_wrap_inline4209 - - (5)
17395-0841 - tex2html_wrap_inline4213 tex2html_wrap_inline4215 - - (1)
tex2html_wrap_inline4217 tex2html_wrap_inline4219 tex2html_wrap_inline4221 - - (3)
17411-3154 tex2html_wrap_inline4141 tex2html_wrap_inline4227 tex2html_wrap_inline4229 - - (1) 14
17416-2112 tex2html_wrap_inline4233 tex2html_wrap_inline4235 tex2html_wrap_inline3613 - - (5)
17418-3335 tex2html_wrap_inline4241 tex2html_wrap_inline4243 tex2html_wrap_inline4245 - - (7)
Table 3: d) Observed magnitudes

 

IRAS name J H K L' M Run Other measurements
17423-1755 tex2html_wrap_inline4259 tex2html_wrap_inline3427 tex2html_wrap_inline4263 - - (3)
17433-1750 tex2html_wrap_inline4267 tex2html_wrap_inline3633 tex2html_wrap_inline4271 - - (1) 9
17441-2411 tex2html_wrap_inline4275 tex2html_wrap_inline4277 tex2html_wrap_inline4279 - - (5) 9, 26
SAO 209306 tex2html_wrap_inline4283 tex2html_wrap_inline4285 tex2html_wrap_inline4287 tex2html_wrap_inline4289 - (6)
17466-3031 tex2html_wrap_inline4293 tex2html_wrap_inline4295 tex2html_wrap_inline4297 - - (5)
17479-3032 tex2html_wrap_inline4301 tex2html_wrap_inline3237 tex2html_wrap_inline4305 - - (4)
17495-2534 tex2html_wrap_inline4309 tex2html_wrap_inline4311 tex2html_wrap_inline4313 - - (1)
17506-2955 tex2html_wrap_inline4317 tex2html_wrap_inline4319 tex2html_wrap_inline3993 - - (5)
17540-2753 tex2html_wrap_inline3711 tex2html_wrap_inline4327 tex2html_wrap_inline4329 tex2html_wrap_inline4331 tex2html_wrap_inline4333 (5) 14
17542-0603 tex2html_wrap_inline4337 tex2html_wrap_inline4339 tex2html_wrap_inline4341 - - (1)
17543-3102 tex2html_wrap_inline4181 tex2html_wrap_inline4347 tex2html_wrap_inline4349 tex2html_wrap_inline4351 - (4)
 17548-2753A tex2html_wrap_inline4355 tex2html_wrap_inline4357 tex2html_wrap_inline4359 - - (5)
 17548-2753B tex2html_wrap_inline4363 tex2html_wrap_inline4365 tex2html_wrap_inline4367 - - (5)
17550-2800 tex2html_wrap_inline4371 tex2html_wrap_inline2903 tex2html_wrap_inline4375 - - (5)
17550-2120 tex2html_wrap_inline4379 tex2html_wrap_inline4381 tex2html_wrap_inline4383 - - (5)
17560-2027 tex2html_wrap_inline2997 tex2html_wrap_inline3045 tex2html_wrap_inline4327 - - (3)
17579-3121 tex2html_wrap_inline3735 tex2html_wrap_inline4397 tex2html_wrap_inline4399 - - (1)
17580-3111 tex2html_wrap_inline4403 tex2html_wrap_inline4405 tex2html_wrap_inline3511 - - (5) 9
- tex2html_wrap_inline4409 tex2html_wrap_inline4411 tex2html_wrap_inline4413 tex2html_wrap_inline4415 (6)
17581-2926 tex2html_wrap_inline4419 tex2html_wrap_inline4421 tex2html_wrap_inline3559 - - (5)
17582-2619 tex2html_wrap_inline4427 tex2html_wrap_inline4429 tex2html_wrap_inline4431 - - (5)
17583-3346 tex2html_wrap_inline3085 tex2html_wrap_inline4437 tex2html_wrap_inline4439 tex2html_wrap_inline4441 tex2html_wrap_inline4443 (7)
17584-3147 tex2html_wrap_inline4447 tex2html_wrap_inline3867 tex2html_wrap_inline4451 tex2html_wrap_inline4453 tex2html_wrap_inline4455 (7)
17597-1442 tex2html_wrap_inline4459 tex2html_wrap_inline4461 tex2html_wrap_inline4463 - - (3)
18011-2057 tex2html_wrap_inline4467 tex2html_wrap_inline4469 tex2html_wrap_inline4471 - - (5)
18019-3121 tex2html_wrap_inline4475 tex2html_wrap_inline4477 tex2html_wrap_inline4479 - - (7)
18025-3906 tex2html_wrap_inline4483 tex2html_wrap_inline4485 tex2html_wrap_inline2943 tex2html_wrap_inline4489 tex2html_wrap_inline4491 (4) 9, 12
SAO 85766 tex2html_wrap_inline4495 tex2html_wrap_inline4497 tex2html_wrap_inline4499 - - (3) 35
18075-0924 tex2html_wrap_inline3237 tex2html_wrap_inline4505 tex2html_wrap_inline4507 - - (5)
18087-1440 tex2html_wrap_inline4511 tex2html_wrap_inline4513 tex2html_wrap_inline4515 - - (1)
18095+2704 tex2html_wrap_inline4519 tex2html_wrap_inline4521 tex2html_wrap_inline4523 - - (5) 26, 35, 36, 37
18096-3230 tex2html_wrap_inline4527 tex2html_wrap_inline4529 tex2html_wrap_inline4531 - - (7)
18182-1504 tex2html_wrap_inline4535 tex2html_wrap_inline4537 tex2html_wrap_inline4539 - - (5)
18186-0833 tex2html_wrap_inline4543 tex2html_wrap_inline4543 tex2html_wrap_inline4547 - - (1)
18216-0156 - tex2html_wrap_inline4551 tex2html_wrap_inline3201 - - (1)
18229-1127 tex2html_wrap_inline4557 tex2html_wrap_inline4559 tex2html_wrap_inline4561    -       -    (1)
18246-1032 tex2html_wrap_inline4565 tex2html_wrap_inline3301 tex2html_wrap_inline4569 - - (5)
18252-1016 tex2html_wrap_inline4573 tex2html_wrap_inline4575 tex2html_wrap_inline4577 - - (5)
Table 3: e) Observed magnitudes

 

IRAS name J H K     L'         M     Run Other measurements
18257-1000 tex2html_wrap_inline3779 tex2html_wrap_inline4593 tex2html_wrap_inline4595 - - (1)
18347-0825 tex2html_wrap_inline3031 tex2html_wrap_inline4601 tex2html_wrap_inline3537 - - (5)
18379-1707 tex2html_wrap_inline4607 tex2html_wrap_inline4609 tex2html_wrap_inline4611 - - (1) 12
18386-1253 tex2html_wrap_inline4615 tex2html_wrap_inline4617 tex2html_wrap_inline4313 - - (1)
18420-0512 tex2html_wrap_inline3779 tex2html_wrap_inline3275 tex2html_wrap_inline4627 - - (3)
18454+0001 tex2html_wrap_inline3417 tex2html_wrap_inline4633 tex2html_wrap_inline4635 - - (5)
18485+0642 tex2html_wrap_inline4639 tex2html_wrap_inline4641 tex2html_wrap_inline3631 - - (3)
18514+0019 tex2html_wrap_inline4647 tex2html_wrap_inline4649 tex2html_wrap_inline4651 - - (1)
18518+0558 tex2html_wrap_inline4655 tex2html_wrap_inline4657 tex2html_wrap_inline4659 - - (5)
18520+0007 tex2html_wrap_inline3675 tex2html_wrap_inline4665 tex2html_wrap_inline4667 - - (5)
18576+0341 tex2html_wrap_inline4671 tex2html_wrap_inline4673 tex2html_wrap_inline4675 - - (1)
18582+0001 tex2html_wrap_inline4679 tex2html_wrap_inline4681 tex2html_wrap_inline4683 - - (1)
19005-0445 tex2html_wrap_inline4687 tex2html_wrap_inline4689 tex2html_wrap_inline4271 - - (3)
19071+0857 tex2html_wrap_inline3031 tex2html_wrap_inline4697 tex2html_wrap_inline4699 - - (5)
19154+0809 tex2html_wrap_inline4703 tex2html_wrap_inline4705 tex2html_wrap_inline4707 - - (3)
19176+1251 tex2html_wrap_inline4711 tex2html_wrap_inline4713 tex2html_wrap_inline4715 - - (5)
19190+1048 tex2html_wrap_inline4719 tex2html_wrap_inline4721 tex2html_wrap_inline4569 - - (5)
19193+1804 tex2html_wrap_inline4727 tex2html_wrap_inline4405 tex2html_wrap_inline4731 - - (5)
19207+2023 tex2html_wrap_inline4735 tex2html_wrap_inline4737 tex2html_wrap_inline4739 - - (5)
19254+1631 tex2html_wrap_inline3363 tex2html_wrap_inline4745 tex2html_wrap_inline4747 - - (5)
19283+1944 - tex2html_wrap_inline4403 tex2html_wrap_inline4753 - - (5)
- - tex2html_wrap_inline4755 - - (8)
19306+1407 tex2html_wrap_inline4759 tex2html_wrap_inline4761 tex2html_wrap_inline4763 - - (5)
19344+2457 tex2html_wrap_inline3031 tex2html_wrap_inline4769 tex2html_wrap_inline4771 - - (1)
19356+0754 tex2html_wrap_inline4775 tex2html_wrap_inline4777 tex2html_wrap_inline3217 - - (5)
19454+2920 tex2html_wrap_inline4783 tex2html_wrap_inline4785 tex2html_wrap_inline4787 - - (5) 35
19475+3119 tex2html_wrap_inline2943 tex2html_wrap_inline4793 tex2html_wrap_inline4795 - - (3) 37
19477+2401 tex2html_wrap_inline4799 tex2html_wrap_inline4801 tex2html_wrap_inline4803 - - (5) 35
19576+2814 tex2html_wrap_inline3007 tex2html_wrap_inline4809 tex2html_wrap_inline4811 - - (8)
19589+4020 tex2html_wrap_inline4815 tex2html_wrap_inline4817 tex2html_wrap_inline4819 - - (5)
19590-1249 tex2html_wrap_inline4823 tex2html_wrap_inline4825 tex2html_wrap_inline4827 - - (1)
20094+3721 tex2html_wrap_inline4485 tex2html_wrap_inline3429 tex2html_wrap_inline4835 - - (3)
20144+4656 - tex2html_wrap_inline4839 tex2html_wrap_inline4841 - - (1)
tex2html_wrap_inline4843 tex2html_wrap_inline4845 tex2html_wrap_inline4847 - - (5)
20144+3526 tex2html_wrap_inline4851 tex2html_wrap_inline4853 tex2html_wrap_inline4855    -       -    (1)
20244+3509 tex2html_wrap_inline4859 tex2html_wrap_inline4861 tex2html_wrap_inline4863 - - (3)
20406+2953 tex2html_wrap_inline4867 tex2html_wrap_inline4869 tex2html_wrap_inline4871 - - (5)
20461+3853 tex2html_wrap_inline4875 tex2html_wrap_inline4877 tex2html_wrap_inline4879 - - (9)
Table 3: f) Observed magnitudes

 

IRAS name J H K     L'         M     Run Other measurements
20462+3416 tex2html_wrap_inline4893 tex2html_wrap_inline4895 tex2html_wrap_inline4897 - - (9)
20470+4458 - tex2html_wrap_inline3031 tex2html_wrap_inline4903 tex2html_wrap_inline3933 - (9) 1
20490+5934 tex2html_wrap_inline4909 tex2html_wrap_inline4911 tex2html_wrap_inline4913 - - (8) 4
tex2html_wrap_inline4915 tex2html_wrap_inline3035 tex2html_wrap_inline3217 - - (9)
20559+6416 tex2html_wrap_inline4923 tex2html_wrap_inline2941 tex2html_wrap_inline4659 - - (9)
20572+4919 tex2html_wrap_inline3417 tex2html_wrap_inline4747 tex2html_wrap_inline4935 - - (9) 4
20588+5215 tex2html_wrap_inline4939 tex2html_wrap_inline4941 tex2html_wrap_inline4943 - - (9)
21002+4939 tex2html_wrap_inline4947 tex2html_wrap_inline3417 tex2html_wrap_inline4951 - - (9) 38
21289+5815 tex2html_wrap_inline4955 tex2html_wrap_inline4957 tex2html_wrap_inline4145 - - (9)
21542+5558 tex2html_wrap_inline4963 tex2html_wrap_inline4965 tex2html_wrap_inline4967 - - (5)
21546+4721 tex2html_wrap_inline4971 tex2html_wrap_inline4973 tex2html_wrap_inline4975 - - (5)
tex2html_wrap_inline4977 tex2html_wrap_inline4979 tex2html_wrap_inline4981 - - (9)
22023+5249 tex2html_wrap_inline4985 tex2html_wrap_inline4987 tex2html_wrap_inline4989 - - (5)
22036+5306 tex2html_wrap_inline4993 tex2html_wrap_inline4995 tex2html_wrap_inline4997 - - (5)
tex2html_wrap_inline4999 tex2html_wrap_inline5001 tex2html_wrap_inline5003 - - (8)
tex2html_wrap_inline5005 tex2html_wrap_inline3973 tex2html_wrap_inline5009 tex2html_wrap_inline5011 - (9)
22223+4327 tex2html_wrap_inline3467 tex2html_wrap_inline5017 tex2html_wrap_inline5019 - - (2)
tex2html_wrap_inline5021 tex2html_wrap_inline5023 tex2html_wrap_inline5025 - - (5) 5
SAO 34504 tex2html_wrap_inline5029 tex2html_wrap_inline5031 tex2html_wrap_inline5033 - - (1) 1, 26, 37
22331+5809 tex2html_wrap_inline5037 tex2html_wrap_inline5039 tex2html_wrap_inline5041 - - (5)
23198-0230 tex2html_wrap_inline4135 tex2html_wrap_inline5047 tex2html_wrap_inline3047 - - (9) 39
23304+6147 tex2html_wrap_inline4681 tex2html_wrap_inline3205 tex2html_wrap_inline3247 - - (9) 1, 3, 4
23312+6028 tex2html_wrap_inline5061 tex2html_wrap_inline5063 tex2html_wrap_inline4133 - - (5)
23436+6306 tex2html_wrap_inline5069 tex2html_wrap_inline5071 tex2html_wrap_inline5073 - - (9)
Table 3: g) Observed magnitudes
1. Paper I 14. Lepine et al. (1995) 27. Persi et al. (1987)
2. Kenyon et al. (1990) 15. Miroshnichenko et al. (1996) 28 Le Bertre (1993)
3. Hrivnak & Kwok (1991) 16. Gaylard & Whitelock (1988) 29. Epchtein et al. (1987)
4. Paper II 17. Persson & Campbell (1988) 30. Nyman et al. (1993)
5. Kwok et al. (1995) 18. Liseau et al. (1992) 31. Epchtein & Nguyen-Q-Rieu (1982)
6. Blommaert et al. (1993) 19. Allen & Glass (1975) 32. Hu et al. (1993b)
7. Allen (1974) 20. Hrivnak et al. (1989) 33. Persi et al. (1990)
8. Allen (1973) 21. Hu et al. (1990) 34. Jones et al. (1982)
9. Hu et al. (1993a) 22. Hu et al. (1989) 35. Lawrence et al. (1990)
10. Campbell et al. (1989) 23. Gaylard et al. (1989) 36. Hrivnak et al. (1988)
11. Zijlstra et al. (1991) 24. Elias (1978) 37. Kastner & Weintraub (1995)
12. Fouque et al. (1992) 25. Lloyd-Evans (1985) 38. Cohen (1974)
13. Kastner et al. (1992) 26. van der Veen et al. (1989) 39. Whitelock et al. (1995).

 

 

IRAS name Run    IRAS name Run
01475-0740 (9) 18011-1847 (3)
04117+6402 (9) 18083-2155 (3)
04172+4411 (9) 18355-0712 (5)
 05284+19451 (9) 18385+1350 (5)
05318+2749 (9) 18524+0544 (5)
06055-0653 (9) 18533+0523 (5)
 06499+01452 (9) 19024+0044 (5)
08574-5011 (4) 19182+1806 (5)
 09024-50193 (4) 19219+1533 (5)
09032-3953 (4) 19480+2504 (5)
09370-4826 (6) 20042+3259 (8)
10194-5625 (4,7) 20103+3419 (5)
11472-7834 (6) 20272+3535 (5)
11544-6408 (4) 20404+4527 (5)
 14562-56374 (4) 21206+5145 (5)
16040-4708 (7) 21388+5622 (5)
16114-4504 (4) 21480+5640 (5)
17021-3109 (4) 21537+6435 (9)
17086-2403 (1) 21554+6204 (9)
17448-2131 (1) 22568+6141 (5,9)
17521-2938 (5) 23125+5921 (5)
1 Detected in run (8).
2 The object detected in run (2) is 40'' away from the
      IRAS position.
3 Detected in run (6).
4 Detected in run (7).
Table 4: IRAS sources not detected in the K band

All the IRAS sources included in Table  3 (click here) satisfy the selection criteria described in Paper I with the exceptions of IRAS 19344+2457, identified as a new OH/IR star, and for which no previous near infrared photometry was available, and IRAS 19590-1249, a recently discovered hot post-AGB star at high galactic latitude with nebular emission lines (McCausland et al. 1992). Both show far infrared colours very similar to those required to be included in the sample but do not strictly satisfy all the selection criteria.

We have plotted in Fig. 3 (click here) the position of the observed infrared sources in the near infrared two-colour diagram J-H vs. H-K. Again, as in Fig. 1 (click here), we have divided the diagram into Regions (from I to V) for our analysis.

The distribution observed in Fig. 3 (click here) looks quite different to that shown by the sample of well identified objects in Fig. 1 (click here), specially the fact that only three sources are found in Region V, where we expect to find well evolved PNe. The three of them have recently been identified as new PNe through optical spectroscopy (García-Lario et al. 1997a), which confirms the validity of this method to detect new PNe.

In contrast, the majority of sources in Fig. 3 (click here) are located in Regions I and II of the diagram where basically all kind of objects can be present, as we can see in Table 2 (click here), complicating the identification process.

The lack of well evolved PNe among the unidentified objects in our sample can simply be explained as a selection effect. Bright PNe are easily recognized in the optical range through the detection of the many nebular emission lines covering their optical spectra. Those not yet discovered probably belong to the group of very oung and dusty-PNe and, thus, if present in our sample, will probably show unusual near infrared colours, as we will confirm later.

4.2. Classification of the unidentified IRAS sources

4.2.1. PNe

As we have already shown, only PNe displaying the characteristic excess observed in the J band can be unambiguously recognized as such, based on near infrared data alone. Unfortunately, only 3 objects have been found in Region V of the near infrared two-colour diagram among the unidentified IRAS sources in our sample. These are SAO 244567, IRAS 18186-0833 and IRAS 17074-1845, and the three of them have been identified as new PNe through optical spectroscopy.

For the detection of the rest of PNe showing peculiar near infrared colours we need to use additional information obtained in other spectral ranges. The far infrared IRAS colours are not useful in this case, since PNe are known to be widely distributed throughout the whole selected region in the IRAS two-colour diagram. Fortunately, the ionized gas in their envelopes can easily be detected in the radio continuum and this has been used in a few cases in Table 6 to classify previously unidentified objects as new PNe, once confirmed its nature via optical spectroscopy (van de Steene et al. 1996a,b). In addition, optical spectra were also taken for many of the objects located in the IRAS two-colour diagram in the region where no overlap exists with young stellar objects, active galactic nuclei or variable OH/IR stars, whenever an optical counterpart in the Palomar or ESO prints was found (García-Lario et al. 1997a). They were the best candidates for being new PNe and, in fact, we identified in this way a few additional PNe which are also included in Table 6 as new detections. However, our optical spectroscopy revealed that most of the unidentified objects in this region of the diagram were not PNe, but transition objects in the post-AGB stage, some of them showing very bright optical counterparts, as we will see below.

Table 5 (click here) shows the distribution of the new PNe in the near infrared two-colour diagram. As we can see, most of them are associated with colours which are only unusually observed in well known PNe (see Table 2 (click here) for comparison). Some are found in Regions III and IV of the diagram, sometimes extremely reddened, such as IRAS 07027-7934. As we have previously shown, PNe in these regions of the diagram are expected to be very young and dusty. On the other hand, others are also observed in Regions I and II and may be PNe in binary systems, where the emission detected in the near infrared is coming from the photosphere of the companion star. This is true, at least, for IRAS 17395-0841, with a star located at only 2'', which is the main responsible for the near infrared emission observed. However, we have found that many of these new PNe show a faint nebular emission of a very low excitation class and bright central stars with a low effective temperature (tex2html_wrap_inline5201 25000 K) which are completely dominating the emission observed in the near infrared. They are also probably very young PNe, very similar to M1-26 and CRL 618, although with not such a strong circumstellar reddening.

Finally, we should also mention that some of the objects not detected in the near infrared above our detection limit turned out to be new PNe when observed in the optical. They are faint PNe but they do not show any indication of being young. This supports the idea that only the brightest PNe and those very young and dusty are easily detectable in the near infrared and can explain why we did not detect a large number of evolved PNe among the unidentified objects in our sample. The selection effect is clear and must be taken into account if we want to derive statistical conclusions.

 

 

Class Region I Region II Region III Region IV Region V Not Detected Detected (Total)
Planetary Nebulae 8 16 4 9 3 6 40 (46)
Post-AGB 58 28 4 20 0 15 110 (125)
Non-variable OH/IR 3 25 3 1 0 4 32 (36)
Variable OH/IR 3 24 1 0 0 3 28 (31)
Young Stellar Objects 11 12 18 26 0 15 67 (82)
Galaxies 0 0 0 0 0 2 0 (2)
Table 5: Distribution of the various types of objects found among the unidentified IRAS sources in the near infrared two-colour diagram

 

4.2.2. Late AGB/Post-AGB stars

As we can see in Table 5 (click here), two thirds of the previously unidentified objects in our sample have been classified either as late-AGB or post-AGB stars. Compared to the small percentage found among the previously known ones, it seems clear that there also exists a strong selection effect which favours the detection of this kind of objects. This is probably due to the fact that many of these stars can only be identified as such in the far infrared, so that only with the advent of IRAS data it has been possible to recognize stars in this short-lived transition phase which precedes the formation of a PN.

It is important to note that under the group of late-AGB stars in our sample we expect to find only heavily obscured variable OH/IR stars, most of them with no optical counterpart in the Palomar or ESO prints. Those with bluer colours or optically bright Mira variables with OH maser emission, which can also be considered late-AGB stars, are located outside the region of the IRAS two-colour diagram under study, as we can see in Fig. 2 (click here). On the other hand, non-variable OH/IR stars, although belonging to the group of post-AGB stars, will be considered as a separate group in the following. As we also see in Table 5 (click here), they show near infrared properties which are quite similar to those observed in variable OH/IR stars, probably because they have just very recently left the AGB stage and are still heavily obscured by their circumstellar envelopes.

OH/IR stars are easily recognized because of the presence of the characteristic double-peaked OH maser emission at 1612 MHz and the strong silicate absorption feature at 9.8 tex2html_wrap_inline2575m in their LRS, when available. However, it is more difficult to determine whether individual objects under this class should be classified either as variable or as non-variable stars. Although, as we will see below their distribution in the IRAS two-colour diagram is not exactly the same, only with a detailed monitoring of the emission observed in the near infrared or in the OH maser we can unambiguously determine to which of these groups the source belongs. In the absence of data, the IRAS variability index has been used in Table 6 to classify OH/IR stars into one of these two classes. To avoid this problem, whenever it has been possible, the sources showing OH maser emission in association with a low IRAS variability index were reobserved in the near infrared. In this way, a few objects initially classified as non-variable turned out to be strongly variable. This was the case, for instance, of IRAS 11438-6330, for which we found extraordinary large variations in the near infrared, when observed at two different epochs separated about two years, with a colour index H-K close to 8 magnitudes and an amplitude of more than 3.5 magnitudes in the K band.

With such a red colour, the most heavily obscured variable OH/IR stars might not be detectable in the K band, specially if they are observed close to a minimum in their light curves. As we can see in Table 5 (click here), some objects classified as OH/IR stars were not detected in the near infrared in a first visit while, when reobserved at a different epoch, they were succesfuly measured well above the detection limit.

In the near infrared two-colour diagram both variable and non-variable OH/IR stars are found strongly concentrated in Region II, as we can see in Table 5 (click here). This region corresponds to objects showing an extremely reddened stellar emission, as expected. In some cases, the near infrared colours are so reddened that the objects fall close to or outside the limits of our plots, as is the case of IRAS 05284+1945, IRAS 11438-6330, IRAS 14247-6148, IRAS 16437-3140, IRAS 17583-3346 and IRAS 20043+2653, all them identified as strongly obscured OH/IR stars.

In the far infrared IRAS two-colour diagram, however, variable and non-variable OH/IR stars are observed following a different distribution. While objects identified as variable OH/IR stars only appear in Region b) of this diagram, as expected, a significant fraction of the IRAS sources classified as non-variable are found well outside the limits of this region, showing a similar distribution to that observed in more evolved post-AGB stars.

Among the IRAS sources classified as post-AGB stars in Table 6 we find not only objects with optically bright counterparts, but also heavily obscured stars still occulted behind their expanding circumstellar shells, showing a low IRAS variability index. Like non-variable OH/IR stars, they are also probably in a very early post-AGB stage but, in this case, the OH maser emission is not detected any more. Most of them are easy to recognize because they are located in the far infrared IRAS two-colour diagram in the region where the only existing overlap is with PNe. Sometimes, however, they are found in regions where a strong overlap exists with other heavily obscured objects, such as compact HII regions or Herbig-Haro objects. In this case, previously unidentified objects have been classified as post-AGB stars and not as young stellar objects only when, after a visual inspection of the Palomar or ESO prints, we found that the IRAS source was not located in the direction of any dark nebula or molecular cloud and, of course, not in association with any known star forming region.

The detection of broad CO molecular emission lines in some of these post-AGB stars suggests that they may be surrounded by C-rich neutral envelopes. This could be the reason why they were not detected in OH. Some of them must be strongly obscured since they are very bright in the far infrared, with an LRS showing a featureless and very red continuum, but they have not been detected in the K band above our detection limit. This is the case of IRAS 09032-3953, IRAS 19480+2504 or IRAS 20028+3910.

In the near infrared two-colour diagram, heavily obscured post-AGB stars are usually detected in Region II, with an identical distribution to that observed in variable and non-variable OH/IR stars, which seems reasonable considering their evolutionary connection. As for the OH/IR stars, the near infrared colours observed can be interpreted as stellar emission combined with a moderate circumstellar reddening. With the dilution of the envelope, as a consequence of the expansion of the circumstellar shell, we expect the emission coming from the central star to become dominant in the near infrared. This is the case of the optically bright post-AGB stars found in Region I of the diagram.

The direct connection between non-variable OH/IR stars and optically bright post-AGB stars is confirmed by the detection of objects, like IRAS 16559-2957, showing both the characteristic double-peaked OH maser emission at 1612 MHz and, at the same time, a bright optical counterpart of intermediate spectral type. In this particular case, the detection of a faint Htex2html_wrap_inline2715 emission over an F5 I stellar continuum confirms the right identification of the optical counterpart.

A direct evolutionary connection between heavily obscured post-AGB stars and PNe is also possible, as observed in the case of IRAS 19016-2330. Not detected by us in June 1986, it was observed by van der Veen et al. (1989) in June 1987 with a K magnitude close to our detection limit and very red colours corresponding to our Region III in the near infrared two-colour diagram. Recently, we have detected the faint optical counterpart of this star and we have found that it already shows nebular emission of a very low excitation class over a very red continuum, while the source still show a deep silicate absorption band in the mid-infrared (van der Veen et al. 1989).

The detection of optically bright post-AGB stars with intermediate spectral types is expected in the case of low mass progenitors, since they evolve slow enough to become observable again in the optical when the effective temperature of the central is still relatively low. In contrast, high mass progenitor stars would evolve so fast that the central star could reach an effective temperature hot enough to produce the onset of the ionization of the envelope when the circumstellar shell is still optically thick.

Supporting this possibility, a few heavily obscured OH/IR stars have been found to show both OH maser emission and radio continuum emission (Zijlstra et al. 1989). It is tempting to speculate that they may be the result of the rapid evolution of high mass progenitors. However, some of these so-called "OHPN" stars are known to be peculiar. Sometimes, as observed in IRAS 17347-3139, our photometric data indicate that the central star is still strongly variable. In addition, the OH maser emission observed usually show multiple peaks which have been interpreted as an indication of bipolarity. On the other hand, it is well known that bipolar structures are usually found among type I PNe, which are considered to be the result of the evolution of high mass progenitors. Some of the most heavily obscured new PNe found, like IRAS 07027-7934 or IRAS 17423-1755, have also been detected in OH, confirming that OH maser emission and ionization may coexist in some peculiar PNe. At least in the case of IRAS 17423-1755 we know that the source is strongly bipolar and it shows a very high velocity outflow (Riera et al. 1995).

A considerable number of post-AGB stars with optically bright counterparts are located in Region IV of the diagram. This position cannot be explained only in terms of interstellar or circumstellar reddening and requires the presence of hot dust surrounding the central star. Hot dust is only expected if the mass loss has not completely stopped after the end of the AGB phase. It is well known that some post-AGB stars show sporadic mass loss episodes which can accelerate the transition towards the PN stage. Supporting this interpretation, we have found that most of the post-AGB stars in Region IV of the diagram show Htex2html_wrap_inline2715 emission in their optical spectra (García-Lario et al. 1997a).

A similar situation is observed for many objects in Region I of the diagram identified as post-AGB stars. Some of them are located to the right of the main-sequence and giant stars and, again, this position cannot be explained in terms of interstellar or circumstellar extinction only. The near infrared excess observed is also atributed to hot dust formed as a consequence of recent post-AGB mass loss and this has also been confirmed in many cases through the detection of Htex2html_wrap_inline2715 emission.

4.2.3. Young stellar objects

Among the previously unidentified IRAS sources in our sample we have also found a considerable fraction of young stellar objects (25%), as expected, most of them concentrated in known star-forming regions, such as the Taurus-Auriga complex and Orion. This fraction is similar to that observed in the group of well identified IRAS sources. Their identification, however, is not possible based on near infrared data alone, and additional criteria or observations in other spectral ranges have been used.

For this purpose, as already shown, IRAS data can be efficiently used, since we know that T-Tauri and Herbig Ae/Be stars are located in a well defined region of the IRAS two-colour diagram. Unfortunately, as we know, in this region we can also find PNe, extremely reddened OH/IR stars and galaxies. On the other hand, compact H II regions and other heavily obscured young stellar objects are also observed only in a very specific region of the IRAS two-colour diagram but, again, some overlap exists, in this case usually with PNe. For the objects located in one of these two overlapping regions, and in the absence of data taken in other spectral ranges, the visual inspection of the Palomar or ESO prints and the search for possible associations with known star forming regions is very useful. In this way, for instance, we have identified IRAS 23312+6028 as the central star of an extended H II region, clearly visible on the Palomar print.

Of course, the absence of OH maser emission, the association with a low IRAS variability index or a very low galactic latitude are all criteria which can also be used as additional indicators of a young stellar nature. An abnormal concentration of IRAS sources in a small region of the sky has also been used to identify new star forming regions, specially if the IRAS colours for all them are consistent with a young stellar nature. In addition, sometimes a narrow CO emission line is observed towards sources embedded in molecular clouds, in contrast with the broad CO emission line observed in the expanding shells of C-rich post-main sequence stars. Moreover, in high density regions, H2O maser emission (sometimes also NH3), is frequently detected, usually associated to the presence of Herbig-Haro objects.

As we can see in Table 5 (click here), most of the previously unidentified IRAS sources now classified as young stellar objects appear concentrated in Regions III and IV of the near infrared two-colour diagram. As expected, the most heavily obscured ones, usually identified as compact H II regions or Herbig-Haro objects, tend to concentrate in Region III of the diagram, although a few of them are also found not too far in Region II. Embedded in their parent molecular clouds, some of them do no show any optical counterpart and the near infrared colours observed are consistent with hot dust emission at temperatures betwen 800 and 1500 K.

In contrast, those located in Region IV of the diagram usually show bright optical counterparts and are identified as T-Tauri or Herbig Ae/Be stars. Many of these stars are known to be surrounded by circumstellar disks which are probably responsible for the strong near infrared excess observed. The few objects identified as T-Tauri or Herbig Ae/Be stars found in Region I of the diagram with no or very little near infrared excess may be the result of the observation of these circumstellar disks pole-on.

4.2.4. Galaxies

As we know, only the brightest active galactic nuclei are expected to fulfill our selection criteria, and these are usually well known objects in the literature. Thus, it is not surprising that only two objects have been considered as possible new active galactic nuclei among the unidentified IRAS sources in our sample.

One of them, IRAS 01475-0740, has already been confirmed as a new Seyfert galaxy through optical spectroscopy (Pérez et al. 1990). The other one, IRAS 04117+6402, has tentatively been classified as a possible galaxy because it shows the characteristic colours both in the far infrared and the near infrared and it is located at a relatively high galactic latitude without being associated to any known star forming region. However, a spectroscopic confirmation is still pending.

Although active galactic nuclei appear concentrated in well defined regions of both the far infrared and the near infrared two-colour diagrams, their detection in the near infrared is very difficult, since even the brightest sources are expected to be very faint. In fact, both IRAS 01475-0740 and IRAS 04117+6402 were not detected in the K band above our detection limit, suggesting that a few others may be hidden among the rest of sources not detected in the K band listed in Table 4 (click here).

The final classification, including all objects observed in the near infrared so far, is shown in Table 6. In this Table we give the sequence number of each source in our sample (Col. 1), the IRAS name (Col. 2) together with any other name usually associated to the IRAS source (Col. 3), the IRAS flux at 12 tex2html_wrap_inline2575m in Janskys as quoted in Version 2 of the Point Source Catalogue (IRAS Science Team 1988) (Col. 4), the non-colour corrected IRAS colours [12]-[25] (Col. 5) and [25]-[60] (Col. 6) as defined in Sect. 4, the LRS class when available (Col. 7), the IRAS variability index (Col. 8), a code from I to V indicating the position of the source in the near infrared two-colour diagram or the letters ND if the object was not detected (Col. 9), information about the molecular emission observations carried out in CO (Cols. 10 and 11) and OH (Cols. 12 and 13), and our tentative classification (Col. 14).


next previous
Up: Near infrared photometry

Copyright by the European Southern Observatory (ESO)
web@ed-phys.fr