...CESAM
This acronym means: Code d'Evolution Stellaire Adaptatif et Modulaire.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...suitable
Recall that, due to the mixing of chemicals a discontinuity may occur in the density profile at the limit of convective cores.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...problem
Formally, with diffusion and turbulent mixing, the integro-differential character disappears, the problem is only differential.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...variables
If negative values of luminosity are expected, the eulerian set of variables given Sect. 3.2.6 (click here), ought to be employed.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...found
For models of interiors of giant planets (Guillot & Morel 1995) another form for Q is used.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...written
As pointed out by Strittmatter et al. (1970), Reiter et al. (1995), this formulation is correct while, in Eq. (4.27) of Kippenhahn & Weigert (1991), the changes of chemicals are ignored.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...orders
According to standard definitions the local error is Op+1.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...improved
Only where the true solution is sufficiently smooth.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...model
This calibrated solar model was evolved, using standard accuracy (sa), from PMS to present solar age with no chemical at equilibrium, a reconstructed atmosphere and an under-shooting of 0.2 pressure scale height.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...has
This property only results from the fact that the last row of A and the vector b are identical, e.g. all the Lobatto IIIC formulae are established in such a way.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...scheme
due to the stiffness, the Lipschitz constants are large and predictor-corrector methods are useless.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...formalism
In fact it is a "Tau" method since the 425#425 do not fit the boundary conditions.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...[1,n],
of course, the abscissa are not necessarily equidistant integers.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Copyright by the European Southern Observatory (ESO)
web@ed-phys.fr