Issue |
Astron. Astrophys. Suppl. Ser.
Volume 121, Number 2, February 1997
|
|
---|---|---|
Page(s) | 223 - 242 | |
DOI | https://doi.org/10.1051/aas:1997284 | |
Published online | 15 February 1997 |
Pre-main sequence candidates in the very young open cluster NGC 6611 *
1
Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
2
Dpto. Física Teórica, C–XI, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E–28049 Madrid, Spain
3
Applied Research Corp., Suite 1120, 8201 Corporate Dr., Landover, MD 20785, U.S.A.
Corresponding author: Send offprint request to: D. de Winter, email: dolf@astro1.ft.uam.es
Received:
19
February
1996
Accepted:
22
May
1996
For the search of Herbig Ae/Be objects in the extremely
young open cluster NGC 6611 we have selected a sample of 52 pre-main sequence
candidates, discovered by Walker (1961),
Sagar & Joshi (1979),
Chini & Wargau (1990) and Thé et
al. (1990). We continue the approach of the last
paper by studying each star individually with new and
unpublished Walraven WULBV, Johnson/Cousins
and Johnson JHKLM photometric data as well as low resolution
spectroscopy.
Each object is shown to have its own extinction
law, which is investigated using their spectral energy distribution (SED).
There does not seem to be a clear relationship between the location
of a star and the extinction law.
This means that the extinction is generated
locally and its correction must be taken individually.
For each object accurate astrophysical parameters are then derived.
Plotting the objects in an HR-diagram, together with the values
for the
,
the probability of membership value P and the extinction characteristics,
helps to discriminate between cluster members and non-cluster members.
Most foreground stars are of late spectral type and are
labeled as Group III objects. Group I, to which most members of
this cluster belong, contains objects of early spectral type.
Part of them seem to be in their post-ZAMS phase
and the other part in their pre-ZAMS stage. By comparing the evolutionary tracks of
Palla & Stahler (1993) for pre-MS objects and of Maeder & Meyenet (1988) for
post-MS stars we have concluded that the cluster contains objects of a few
0.1 Myr as well as objects of about 6 Myr. As most of the Group I
objects do not show well-known Herbig Ae/Be characteristics, the time
scale of clearing the
disk material must be typically less than about 0.1 Myr for the more
massive objects. Objects that show an IR-excess are found among
the less luminous ones. They could still be in their pre-ZAMS phase, having
an age of about 1 Myr. Such an age is appropriate for the Group II
objects, which are of intermediate spectral type. As they are located
close to the stellar birthline they should have been formed recently.
It seems that an efficient clearing mechanism must have taken place,
because not many of these objects are embedded and show only some
IR-anomalies. This could be the reason that we have found no more than
four typical Herbig Ae/Be candidates.
We support the hypothesis of Hillenbrand et al. (1993) that there is an age spread
in NGC 6611. The stars with the highest AV values are located
in the centre of the cluster, somewhat to the northwest. This coincides with
the location of many embedded sources more towards the northwest, a
region in which star-formation is probably still taking place.
The age of the most evolved objects is about 6 Myr.
It would be interesting to study these regions and the
Group II objects since investigating the youngest objects which are
still partly embedded may help us to understand the first phases of star
formation and the rapid cleaning of the circumstellar material.
Young “naked” stars can also be formed by evaporating
gaseous globules (EGGs) as was recently discovered in dark regions of this
cluster (Hester & Scowen 1995). The lack
of angular momentum of such objects could explain the paucity of
HAeBe candidates.
Key words: circumstellar matter / stars: emission-line / stars: evolution / stars: formation / stars: pre-main sequence / open clusters and associations: NGC 6611
Based partly on observations obtained at the European Southern Observatory, La Silla, Chile. Tables 1–4 and 6 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/ Abstract.html. Figures 1 and 3 and Sect. 5 are only available in electronic form at the Editions de Physique http://www.ed-phys.fr
© European Southern Observatory (ESO), 1997