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Abstract. This paper presents a method for extracting
a catalogue of galaxy candidates from the Digitized Sky
Survey (DSS). The method is based on a functional anal-
ysis applied on each individual plate. The standard devia-
tion of pixel optical densities versus the inverse of surface
area leads to a diagram in which extended and star-like
objects are well separated. This diagram is used for a pre-
liminary recognition. Then, a filtering process is applied
using a Neural Network method associated with a training
sample built with well identified objects. The main cata-
logue gives coordinates, total magnitude, isophotal diam-
eter, axis ratio, position angle for 2 772 061 galaxy candi-
dates. The method favors the detection of normal galaxies.
This creates a bias against compact high surface bright-
ness galaxies.
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1. Introduction

For several years we have been embarked on automatic
galaxy extraction from various sources of images. Indeed,
we are entering a new era, where the visual analysis will be
replaced by an automatic one. MacGillivray et al. (1987)
initiated automatic galaxy recognition with the COSMOS
machine. A few years later similar techniques were used
by Maddox et al. (1990) for the construction of the APM
catalogue. Independently, Lauberts and Valentijn applied
automatic surface photometry on galaxies discovered from
a visual inspection. Nevertheless, we are still at the begin-
ning of this process and new tools have to be invented.
Some of the techniques used here were not even imagin-
able a few years ago.
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Our general purpose is twofold:
– We aim to build large and complete samples of galaxies

needed for extragalactic studies including the prepara-
tion of future radio or spectroscopic observations. For
each galaxy we want to extract accurate position, di-
ameter and axis ratio, position angle, magnitude and,
if possible, some morphological description;

– We aim also to develop and test new methods of
source recognition. This second target is important for
forthcoming large surveys which will require automatic
analyses.

In a preliminary study (Paturel et al. 1996) our target was
limited to identification of galaxies already known in the
LEDA1 database and to extraction of some astrophysi-
cal parameters using our own digitization of the Palomar
Sky Survey. The resolution of the digitization was too
poor (6′′) to allow recognition of new galaxies. We devel-
oped source extraction and automatic cross-identification
algorithms.

In a second study (Vauglin et al. 1998) the same source
extraction algorithms were used but we applied an auto-
matic galaxy recognition based on Discriminant Analysis
method. The I-band CCD images were obtained with the
1-meter ESO telescope for the Deep Near Infrared Survey
(DENIS). Because of the high dynamic of the CCD re-
ceiver the separation between stars and galaxies is rela-
tively easy. Stars have a very high central intensity and a
small surface area while galaxies do not.

In the present study we are aiming at the most diffi-
cult task of recognizing new galaxies from the digitization
of photographic plates (POSS1 and UK Schmidt plates).
Because of plate properties the center of a source (star
or galaxy) is generally saturated and only a few pieces
of information can be derived from optical density of
pixels2. Besides, the material is made of very inhomoge-
neous plates taken from very different regions. It is simply

1 http://leda.univ-lyon1.fr
2 Note that all along this paper the optical densities

are defined according to the DSS documentation as
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not possible to imagine that the same method will work
in all conditions. This major conclusion of our preliminary
analysis will force us to imagine a method adapted to each
individual plate.

The different methods of automatic recognition can
presently be classified in 5 classes as follows:

– The Discriminant Analysis (see Vauglin et al. 1998). It
is one of the oldest automatic methods. Using a train-
ing sample, the sample is shared in classes according
to a linear procedure which maximizes the inertia be-
tween classes and minimizes the inertia within a class;

– The functional analysis is similar to the previous
method. The objects are plotted in the parameter
space. The function sharing the different classes of
the training sample is determined by an expert. It is
not necessarily linear. In the present study we will
use the functional analysis method as a first step of
star/galaxy discrimination;

– The decision tree method (see Weir et al. 1995). Using
a training sample, the discrimination power of some
parameters is determined. Then, a combination of tests
is carried out allowing the separation of the object
sample into several classes;

– The neural network method (see: Storrie-Lombardi
et al. 1992; Odewahn et al. 1992; Lahav 1994; Bertin
& Arnouts 1996a,b). The network is a set of in-
puts (parameters) connected to outputs (classes of ob-
jects) through weighted, non linear links (neurones).
Generally, using a training sample the weights are
calculated in an iterative process to obtain the right
output for a given set of input parameters. The neu-
rones may be organized in several layers in order to
increase the number of links. In the method developed
by Bertin & Arnouts the training sample is automati-
cally built from a proper model of stars and galaxies.
In the present study, we will use the neural network
method in a second step of discrimination;

– Kohonen charts (see Kohonen 1989) This method
seems very promising because it does not require a
training sample. The objects are classified using a kind
of neural network for which the output classes are au-
tomatically defined. This method is similar to the clus-
ter analysis. When the classes are built, an expert has
to identify each of them with a given class of objects
(galaxy, star, defect...). The classification of images
was employed by Heydon-Dumbleton et al. (1989) for
star galaxy classification for the Edinburgh-Durham
Southern Galaxy Catalogue.

dc = 6553.4 log(So/S), where So is the intensity of light
transmission through an unexposed part of the plate and S
is the transmitted intensity through the considered exposed
part. We frequently use the term of pixel “intensity” for dc

instead of the proper term of pixel optical “density” which
could lead to a confusion with the density in the sense of
number of pixels per area unit.

The main characteristic of these methods is that they re-
quire a proper choice of parameters describing each object.
This choice is not obvious. It is guided by the results ob-
tained on a training sample for which each object has been
classified by an expert. This is the main difficulty in the
present application. The material (see Sect. 2) is so inho-
mogeneous that it would be necessary to build a training
sample for each plate. This would mean classifying about
500 000 objects by eye. So, we worked in another way. In
Sect. 3 we show that the diagram of the dispersion of pixel
optical densities (i.e. standard error of the pixel intensi-
ties) versus the inverse of the surface area of a given object
performs this Star/Galaxy separation well. Thus, we plot-
ted these diagrams for each plate and made the separation
between stars and galaxies by adopting a frontier function
in an interactive manner. This constitutes the first step
leading us to a preliminary catalogue of 4.3 million galaxy
candidates and 47.4 million star candidates. In Sect. 4, we
built a large, general training sample of 258 983 stars and
87 725 galaxies by cross-identifying our preliminary cat-
alog with well established star and galaxy catalogs. This
training sample was used to setup a neural network allow-
ing us to filter the star/galaxy candidates. After this filter-
ing step we got an all-sky catalogue of 3.2 million galaxy
candidates. Finally, in Sect. 5 we made the internal cross-
identification (what we call the Auto-crossidentification)
for galaxies seen several times on different plates. Then,
we made the cross-identification with LEDA galaxies and
cleaned the catalogue in order to remove contamination
by known extended objects (Planetary Nebulae, Globular
clusters, Open clusters, Bright Nebulae, Bright Stars) and
by very faint galactic stars. This led to the final catalogue
of 2 772 061 galaxy candidates.

2. DSS material

2.1. Description of DSS scans

The material comes from the set of 102 compressed CD-
ROM’s of the Digitized Sky Survey produced at the Space
Telescope Science Institute.

Each CD-ROM contains the digitization files of sev-
eral plates. The Northern hemisphere (δ ≥ +3 deg) con-
tains 644 plates, noted xe001 to xe643 and one addi-
tional (xe1001). The Southern hemisphere contains 894
plates noted s001 to s894. Each plate is constituted of 784
(28 × 28) individual scans of 500 × 500 pixels3. Each in-
dividual scan is labelled with a 2-symbol extension (from
0 to r), e.g., s828.00 to s828.rr. The scan *.11 is the most
South-Eastern one, while the scan *.rr is the North-West
one. We skipped all scans labelled with 1 or r (i.e., *.1x,
*.x1, *.rx, *.xr) in order to reject the extreme edge of
each plate. Thus, we processed about one million elemen-
tary scans. The size of a pixel is 1.70′′. Each elementary

3 Except for the last row which is 500 × 499.
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Fig. 1. A typical image (s828.ap) from the DSS CD-ROM’s.
This image is only 12.6× 12.6 mm on the original plates. The
frame is 14.2′ × 14.2′. North is on the bottom side, East is on
the left side. The seven galaxies clearly visible on the scan are
new ones which were recognized by the automatic program

scan is about 14.2′× 14.2′. The Northern part is digitized
from E(red) plates, while the Southern part comes from
IIIa-J plates. An example of a typical elementary scan is
given in Fig. 1.

2.2. Source extraction

The source extraction is made from uncompressed scans
in the same way as in our previous papers (Paturel et al.
1996; Vauglin et al. 1999). The sky background is assumed
to be homogeneous over an individual scan. Its mean in-
tensity Ibg is calculated from the maximum of the his-
togram of pixel intensities. The standard deviation σbg is
calculated by symmetrizing the low intensity side of the
histogram. The threshold for source extraction is chosen
as Ibg +3σbg. Only the sources having more than 36 pixels
are kept. This means that the smallest objects have a size
of
√

37 pixels, i.e., 10′′. Further we impose that the num-
ber of pixels on one side of the matrix of pixels is larger
than or equal to three. If we note npx, the number of pix-
els per line and nli the number of lines, this means that
npx ≥ 3, nli ≥ 3 and npx.nli > 36.

2.3. Equatorial coordinates

For each object we calculate the x − y mean position of
the matrix. The mean is obtained by weighting each pixel
with its intensity. The J2000 equatorial coordinates are
then calculated using the plate solution calculated at the

Space Telescope Science Institute. The coefficients of the
13-th order polynomial solution are read in the header
file associated which each plate. The internal accuracy
is about 3′′ in right ascension and declination, near the
equatorial plane. Near the Northern pole the accuracy is
about 4′′. Near the Southern pole it is about 5′′. This is
in agreement with the results found by a recent study of
coordinate accuracy (Paturel et al. 1999; Paturel & Petit
1999). Most of the uncertainty comes from the positioning
of the galaxy center.

2.4. Cleaning of sources

A treatment is then applied on matrices corresponding
to overlapping objects in order to separate them into
their different components. The basic assumption in this
treatment is that astronomical objects have a central
symmetry.

First of all, we determined the number of maxima in
the pixel matrix. This is done as follows: when a maximum
is found, the region around its position is inhibited and the
following maxima are looked for, outside this region. The
inhibited region around each maximum is actually the el-
lipse centered on the considered maximum and tangent to
the nearest edges of the matrix.

The decomposition of a matrix in several matrices is
then made in the following way: all pixels of the original
matrix are considered one after the other. For a given pixel
P (i, j) we are searching for its symmetrical counterparts
with respect to the n maxima Mk (k = 1, n). If the sym-
metric counterpart of a given pixel P (i, j), calculated with
respect to the k-th maximum, is outside the matrix, or if
it has an intensity below the sky background, the given
pixel P (i, j) is not attributed to the object re-constructed
around this k-th maximum. If the pixel P (i, j) belongs to
several re-constructed objects, the pixel intensity is simply
shared with equal weight between each object. No attempt
has been made to share this intensity in a more refined way
because the pixel intensities are not additive. The objects
which result from this decomposition always have a cen-
tral symmetry in accordance with our basic assumption.
In the final catalogue a flag will remind us a given object
results from such a decomposition process.

The matrices which are truncated by the edge of the
scan are also extrapolated by symmetry if the maximum
itself is not on the edge.

3. Preliminary analysis

We constructed 10 training samples in different regions
and for different plates. For these samples the objects are
classified, by eye, as Star, Galaxy and Unknown. From the
corresponding matrix of pixels of classified objects we cal-
culated many parameters and systematically plotted them
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Fig. 2. Dispersion of density (i.e., standard deviation of the
pixel intensities) of a given object versus the inverse of its sur-
face area. Here the diagram is shown for a training field for
which stars, galaxies and defects have been classified by hu-
man expert. Stars (crosses) and galaxies (open circles) are well
separated. The units are the following: the dispersion of density
σ(dc) is expressed in units of 6553.4 times the actual optical
density (log So/S) of the plate (see footnote in first page). The
surface area is simply the number of pixels above the sky back-
ground (each pixel has a constant surface area of 1.7′′ × 1.7′′).
The choice of these units is not crucial provided it is the same
throughout the work as it is in the present paper

two by two. We found that the dispersion of pixel optical
densities (i.e. standard deviation of the pixel intensities)
plotted versus the inverse of the surface area gives a di-
agram in which galaxies and stars are well separated in
two distinct zones as in Fig. 2. The surface area is sim-
ply the number of pixels having an intensity I larger than
the sky background intensity Ibg. The dispersion of pixel
density, σ, is calculated as the standard deviation of the
pixel intensities through the classical equation:

σ =

√
n
∑
I2 − (

∑
I)2

n2
(1)

where the sums are calculated with the n pixels brighter
than Ibg. An example of this diagram is given in Fig. 2.

3.1. First star/galaxy recognition

These diagrams were plotted for each plate (i.e., 1443 dia-
grams) and a polynomial separation curve was fitted man-
ually to each of them. Three examples of these diagrams
are given in Figs. 3 to 5, from the best to the worst. In
Fig. 3 the frontier between Stars and Galaxies is a straight
line. Stars and Galaxies are well separated. The frontier
separating stars from galaxies is often quite linear as in
Fig. 3, but not necessarily. Indeed, it is also common that
the separation curve bends down for large objects (small

Fig. 3. Example of the diagram of dispersion of density ver-
sus the inverse of the surface area (σ − 1/S) for a field in the
Southern equatorial hemisphere. The separation between stars
and galaxies can be inferred from a comparison with Fig. 2.
The separation curve between stars and galaxies is linear. The
units are the same as in Fig. 2

1/S) as in Fig. 4. This seems to be due to the saturation
of pixel intensities in either the central part of galaxies or
in the halo of bright stars. This phenomenon has also been
seen in the source extraction from I-band CCD images of
the DENIS survey (Mamon, private communication). In
regions of low galactic latitude the separation is more dif-
ficult as shown in Fig. 5 for a fields located at b = −2 deg.
Thus, at low galactic latitude (i.e., |b| < 18 deg) the sep-
aration between stars and galaxies becomes more difficult
especially for small objects (i.e. large values of the inverse
of the surface area) because the two zones are progres-
sively mixing with each other.

This first discrimination step produces a catalogue
with 4 349 140 galaxy candidates and 47 352 280 star
candidates. Hereafter, only the galaxy candidates will be
considered. Nevertheless, our process did not remove every
star from the galaxy candidate sample. A visual inspec-
tion showed that bright stars are sometimes counted as
galaxy candidates because of their extended halo as ex-
plained above.

The construction of a completeness curve is a general
way to check if a catalogue obeys the expected increase
of object number with distance. If we assume that the
number of galaxies within a sphere centered on the ob-
server and of radius r increases as r3, it can be shown
that the number N of galaxies with an apparent di-
ameter larger than a given limit Dlim follows the law:
logN(D > Dlim) = −3 logDlim + cst4. Generally, this
completeness curve is used to check if a sample is complete

4 The completeness curve expressed in apparent magni-
tude m can be written similarly as: logN(m < mlim) =
0.6mlim +cst. We will use this form in Sect. 5.4 when apparent
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Fig. 4. Another example of a diagram of dispersion of density
versus the inverse of the surface area (σ − 1/S) for a field in
the Northern equatorial hemisphere. The separation curve be-
tween stars and galaxies is not linear. The units are the same
as in Fig. 2

Fig. 5. Another example of diagram σ− 1/S for a field located
near the galactic plane (b = −2 deg) in the Southern equatorial
hemisphere. The separation between stars and galaxies is more
difficult. The units are the same as in Fig. 2

up to a given apparent diameter. Here, it is used to check
if the number of galaxy candidates is homogenously dis-
tributed in space, as expected. Note that this curve is
insensitive to the angular coverage of the catalogue or to
the galactic extinction.

The over-sampling of large objects is confirmed by the
completeness curve logN − logD∗ (Fig. 6), which shows
an excess of large galaxies. Here, D∗ =

√
4S′′/π is the

equivalent diameter defined from the surface area S′′ in

magnitudes will be calibrated. It was used by Hubble (1934).
A demonstration is given, e.g., by Zwicky (1957).

Fig. 6. Completeness curve logN−logD∗ built from the galaxy
candidate catalog. The effective diameter D∗ is expressed in
arcseconds. The relation with the surface area S expressed in
number of pixels is given by Rel. (2). It is visible that there is
an excess of large objects (see text)

arcsec−2. In this paper the surface area S is expressed in
number of pixels. Thus, from the pixel size 1.7′′ it results:

logD∗ = 0.5 logS + 0.283 (2)

where D∗ is in arcseconds and the surface area S in num-
ber of pixels. We note that the completeness curve in di-
ameter is quite linear for objects smaller than logD∗ =
1.25 (i.e. 1/S < 0.012 or D∗ ≈ 18′′). The completeness is
fulfilled down to logD∗ = 1.04, i.e. D∗ = 10′′ in agree-
ment with our cut-off (36 pixels). The catalogue contains
one million galaxy candidates larger than 18′′, and thus
3.3 millions with diameter between 18′′ and 10′′.

Now, we have to clean up our galaxy candidate cata-
logue. This is the target of the next section.

4. Cleaning with a neural network

4.1. Construction of a large training sample

We use a Neural Network (hereafter NN) method to per-
form the cleaning. This requires the construction of a large
training sample. We build it by cross-identifying each ob-
ject of our preliminary catalogue with known stars or
galaxies. The known stars are taken from the SAO cat-
alogue. The known galaxies are taken from the LEDA
database.

The cross-identification is based on the J2000 equato-
rial coordinates. The identity of two objects is accepted
when there is only one object within a radius of 10′′. This
severe constraint removes interacting objects which are
not suitable for a training sample. So, we obtain 54186
objects classified as galaxy “G” and 90339 classified as
star “S”. Further, 2105 objects are classified as defect “D”
because of their discrepant characteristics (e.g., a very
elongated matrix with nli/npx > 25 or npx/nli > 25).
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Fig. 7. Decomposition of a matrix in nine rectangles. This de-
composition is used to define the diffraction cross parameter
dc and the defect parameter df

Objects with logD < 1.25 are not used for the construc-
tion of the training sample.

4.2. Definition of neural network input parameters

The NN has three outputs: G, S and D for galaxies, stars
and defects, respectively. The choice of the input param-
eters of the NN is important. They must be very discrim-
inant with reference to the outputs. There is no rule for
the choice of these parameters. We define seven parame-
ters which will be tested with our training sample:

1. P1: The dispersion of pixel optical densities. This is
the parameter defined for the first analysis (Sect. 2);

2. P2: The inverse of the surface area. This is also the
parameter previously used;

3. P3: The logarithm of axis ratio of the object. An elon-
gated object, if not detected as a defect, has more
chance being a galaxy than a star; it is better to use
the axis ratio of the object (calculated as in Sect. 5)
instead of the ratio of the sides of the matrix (npx/nli
or nli/npx). Indeed, a very elongated object can be
located along a diagonal of the squared matrix;

4. P4: The square of the external perimeter divided by
the matrix surface area. This parameter is simply de-
fined as 4(npx+nli)2/(npxnli) and it is very sensitive
to elongated features like scratches, or branches of a
diffraction cross, or satellite tracks;

5. P5: The ratio of the object surface area divided by the
matrix surface area. This parameter is useful for de-
tecting artefacts like those encountered on calibrating
spots near the edge of the plate (in this case the ratio
is nearly one), patchy objects or elongated features;

6. P6: The diffraction-cross parameter dc. The matrix is
divided into nine identical rectangles numbered from 1
to 9 according to Fig. 7. The diffraction cross is defined
as the mean intensity of rectangles 2, 4, 6, 8 divided
by the mean intensity of rectangles 1, 3, 7, 9;

7. P7: The defect parameter. Let na (and nb) be the
number of pixels with an intensity above (and be-
low) the sky background intensity inside the central
rectangle (5). The defect parameter is defined as:

Fig. 8. Histogram of the square of the external perimeter di-
vided by the matrix surface area for stars (solid line) and galax-
ies (dashed line)

Fig. 9. Histogram of the diffraction-cross parameter for stars
(solid line) and galaxies (dashed line)

df = (nb − na)/(nb + na). This is simply the propor-
tion of blank pixels inside the central rectangle. For
an astronomical object we expect no (or a few) blank
pixel in the very center. For an extreme defect we have
df = 1. For a normal object we have df = −1.

In Figs. 8 to 10 we show some of the discriminant param-
eters for galaxies and stars.

4.3. The neural network definition

After several trials and errors, we adopted the NN rep-
resented in Fig. 11. Because there are only three output
parameters (G, S, D) we adopted a simple NN with only
one intermediate layer of 10 neurones each of them having
7 input parameters and 3 output ones. There are 100 free
weightsW connecting two neurones of two different layers.
The input is a vector with seven components. The output
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Fig. 10. Histogram of the ratio of the object surface area divided
by the matrix surface area for stars (solid line) and galaxies
(dashed line)

is a vector with three components. The expected output
vectors are (1, 0, 0), (0, 1, 0), (0, 0, 1).

The different steps of the NN training are the follow-
ing. First of all, the weights are randomly chosen between
−1 and 1. Then, the training sample is read and each in-
dividual parameter is normalized by subtracting its mean
and dividing by its standard deviation, both calculated
from the whole sample. So, we obtain seven input com-
ponents Pi. An object is a vector with seven components.
Then, for each object, the seven input parameters Pi are
entered and propagated down to the last layer (output
layer). For this purpose, the input X of a given neurone is
the weighted mean of its input connections while its out-
put is calculated through a non linear sigmoid function5:

s =
1

(1 + e−X)
· (3)

The error vector E is determined by comparing the cal-
culated output vector with the known output vector (this
is done with the training sample). Then, E is propagated
back using the weights for sharing the error onto the dif-
ferent branches and the derivative of the sigmoid function

ds
dX

=
−e−X

(1 + e−X)2
(4)

for crossing back a neurone. Finally, the weights are cor-
rected accordingly.

The process is repeated (i.e., the normalized input pa-
rameters are entered and the calculation is done again)
until the system becomes stable. In practice this is done
by testing different iteration numbers.

We did some preliminary tests on the whole training
sample to find the best number of intermediate neurones
and the best number of iterations. We tested the number

5 The choice of a sigmoid function is justified by the fact that
we are looking for a bimodal answer. Note that this sigmoid
function is not applied on inputs Pi which are not considered
as neurones.

D

S

G

P1

P2

P3

P4

P5

P6

P7

W

Fig. 11. Representation of the adopted neural network. P1 to
P7 are the seven input parameters. G, S, D are the three out-
put values for galaxy, star and defect, respectively. Each open
circle is a neurone. The connection between two neurones has
a weight W

of intermediate neurones between 7 and 42 and the num-
ber of iterations between 50 and 600. Finally, we decided
to adopt 10 intermediate neurones and 100 iterations.

4.4. Setting and testing the NN

An efficient way to demonstrate the success of an auto-
matic classification programme is the usage of a “control
sample”, i.e. determine the automated parameters (G, S,
D from NN) in the same way for the control sample and
compare these with independent reference values of the
control sample. Actually, we built nine control samples.
The whole sample of 132972 objects with proper object
classification was divided into ten non-overlapping sub-
samples S0 to S9 having the same size (1/30-th of the
total sample). The NN was programmed ten times and we
kept the solution (S0) giving the best result for the whole
sample. Then, to prove the validity of the NN, configured
with S0 only, we applied this configuration to the nine
independent samples S1 to S9. The results for these nine
control samples are given in Table 1.

Obviously, the components of the calculated output
vector (G, S, D) are not exactly 0 or 1. The component
G obtained with the training sample is shown in Fig. 12.
Most of its values are 0 or 1 (i.e., the NN answers either
“yes” if it is a galaxy, or “no” if it is not a galaxy).

In our control we considered a result as good when the
largest component corresponds to the expected one. For
instance: if we got the answer: G = 0.7, S = 0.6, D = 0.1
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Table 1. Application of the NN, configured with a subsample
S0, to nine independent subsamples S1 to S9, for which the re-
sult of the classification is known. When the NN gives the good
answer the result is considered as a success. We give the size
and the percentage of successes for each subsamples S1 to S9
and for the whole sample

samples size percentage of success

S1 4667 94%

S2 4667 94%

S3 4667 93%

S4 4667 93%

S5 4667 93%

S6 4667 92%

S7 4667 94%

S8 4667 94%

S9 4667 94%

Total sample 132972 84%

Fig. 12. NN-Output G obtained with the training sample. Most
of the values are close to zero or one. Components S or D have
exactly the same bimodal distribution

for an object known as a galaxy (G = 1, S = 0, D = 0)
we concluded that the NN gave a right answer, because
the largest component is G.

For the final application of the NN we imposed more
severe constraints in order to reduce contamination of the
galaxy catalogue by stars or defects. The adopted condi-
tions were those given in Table 2. Further, some objects
are considered a priori as defects when the parameter P5

(ratio of the object surface area by the matrix surface
area) is larger than 0.95 (case of a matrix almost with-
out sky background pixel), or when the axis ratio is larger
than 100.

Using this NN cleaning we classified: 1 147 332 objects
as galaxies (G), 134 509 as probable galaxies (g), 1 940 573
as “possible galaxies” (-). We classified: 179 842 objects as
stars (S) (in addition to the catalogue of 47 million stars
previously extracted), 946 884 as defects (D).

Table 2. Additional constraints

Conditions Classification code

G ≥ 0.9 and S < 0.5 and D < 0.5 Galaxy G

G ≥ 0.8 and S < 0.2 and D < 0.2 Probable Gal. g

E ≥ 0.8 and D < 0.5 and G < 0.5 Star S

D > E and D > G Defect D

otherwise Possible Gal. -

5. Construction of the main catalogue

At this stage we have a catalogue of 3 222 414
galaxy candidates. We now have to make the “auto-
crossidentification” to merge a same object seen on
different plates. Because the information on the original
plate will be lost in such a merging process we have to
apply now the corrections which are plate-dependent, like
the effects of the mean airmass extinction or the distance
to the center of the chart (Rousseau et al. 1996; Garnier
et al. 1996).

5.1. Astrophysical parameters

We use a Principal Component Analysis method applied
on pixels positions (i, j) of the matrix associated to an
object. So, we derive for each object a 2 × 2 covariance
matrix from which we calculate its eigenvalues (v1 and v2)
and corresponding eigenvectors. The position angle βDSS

of the major axis is determined from the direction of the
first eigenvector (eigenvector associated with the highest
eigenvalue). The major and minor axes are deduced from
the square root of the first and second eigenvalues. The
apparent magnitude is deduced from the sum of all pixel
intensities. We thus obtain the following parameters:

– Position angle βDSS measured from North towards
East. Note that the position angle is calculated first
with respect to the edge of the frame and then cor-
rected for the actual direction of North.

– Major axis diameter
logDDSS = log

√
v1 + C1 (5)

where C1 is a constant.
– Axis ratio

logRDSS = log
√
v1/v2 + C2 (6)

where C2 is a constant.
– Apparent magnitude

mDSS = −2.5 log
∑
i,j

(I(i, j)− Ibg) + C3 (7)

where C3 is a constant. Magnitudes are corrected for
the mean atmospheric extinction (assuming that the
plate is taken at the meridian) and for the distance
to the center of the plate according to Garnier et al.
(1996):
∆mDSS = −0.0006∆r− c sec ζ. (8)
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Where ∆r is the distance of the considered galaxy to
the plate center (in mm), ζ is the zenithal distance
and c the atmospheric extinction coefficient (0.2 or 0.1
depending on the plate).

In order to calibrate these equations we extracted from the
LEDA database the apparent blue diameter D25, the ma-
jor to minor axis ratio R25 = D25/d25 (axes are defined at
the isophote 25 mag arcsec−2) and the totalBT magnitude
for the galaxies of the training sample. These quantities
are in the system of the Third Reference Catalogue (RC3,
de Vaucouleurs et al. 1991). We get the following results
(σ is the standard deviation, n is the number of remaining
objects after 3-σ rejection:

logD25 = logDDSS + 0.09 σ = 0.06 n = 5619 (9)

logR25 = logRDSS + 0.00 σ = 0.07 n = 5555 (10)

BT = mDSS + 30.6 σ = 0.34 n = 5544. (11)

It is worth noting, that the accuracy is reasonably good
owing to the rather rough comparison. The standard er-
rors should thus be considered as upper limits for galaxies
up to ≈ 15-th magnitude. These magnitudes will be re-
analyzed in a future work in order to take into account
local and secondary effects.

For stars, a comparison with SAO magnitudes gives a
preliminary calibration:

m(stars) = mDSS + 25.1 σ = 0.46. (12)

The difference of zero-points for stars and galaxies sug-
gests that the dispersion of pixel optical densities inter-
venes in a refined calibration.

5.2. Auto-crossidentification

The catalogue of 3 222 414 galaxies is sorted according to
the declination (the search is easier and faster with such
a sorting). Each galaxy is compared with all the others.
This is done four times because one galaxy may only ap-
pear four times at the intersection of four charts. At each
of these four iterations only the locally two closest galax-
ies are merged if their separation calculated along a great
circle is smaller than a given limit. This procedure avoids
the result depending on the order the galaxies are consid-
ered (in other words, the merging is done according to a
physical measurement but not following an arbitrary or-
der). The limit of the separation is calculated from the
actual uncertainty on the position:

dlim = do(1 + cos2 δ)1/2 (13)

where do is the nominal uncertainty on coordinate mea-
surement along one direction. We adopt do = 6′′ (Paturel
et al. 1999). In practice, the galaxies are not actually
merged at this stage. They simply receive an internal num-
bering. A galaxy which appears several times receives the
same internal number. The merging will be done later.
Two reasons justify the postponement of the merging:

1) For each occurrence of a given object we have a ma-
trix. It is not easy, without loss of information, to merge
these matrixes in one mean matrix. 2) The crossidentifi-
cation with LEDA will be done for each extracted object,
even if it appears several times. This will give us a chance
to detect possible inconsistency (e.g. a galaxy identified
once with a given LEDA galaxy and then with another
one when it is extracted from another plate).

Thus, we will still work with the catalogue of 3 222 414
galaxy candidates (a direct merging would have lead to a
catalogue of 2 876 111 galaxies. No inconsistency is found).

5.3. Cross-identification with LEDA

In view of this cross-identification we carried out a cam-
paign of measurement of accurate coordinates. More than
34000 positions of LEDA galaxies were measured (Paturel
et al. 1999; Paturel et al. 2000) and we studied the accu-
racy of the coordinates provided to us by large catalogues
(Paturel & Petit 1999). We added some recent accurate
measurements (Cotton et al. 1999). After this work we
have a list of 194544 galaxies from LEDA with accurate
coordinates and the main astrophysical parameters (diam-
eter, axis ratio, position angle and magnitude).

The cross-identification is based essentially on coordi-
nates using a method similar to the one used for the auto-
crossidentification. Nevertheless, two modifications are in-
troduced: 1) The limit of the separation is calculated from
the previous formula (Rel. 13) but the value of do is de-
duced from the weighted mean of the coordinate accu-
racy (Paturel & Petit 1999) and quadratically increased
by the uncertainty of the DSS coordinates (6′′), because
the coordinates we are comparing have independent er-
rors (this was not the case for auto-crossidentification).
2) When several galaxies match the position criterion we
use astrophysical parameters to choose the best one. For
this purpose we calculate a generalized separation between
the objects according to

t =
1
N

N∑
i=1

wi
|∆Xi|
σ(Xi)

(14)

where wi is the weight assigned to each parameterXi (e.g.,
coordinates, diameter, axis ratio, position angle). ∆Xi is
the difference of the parameter Xi for the two galaxies in
test. After some trials we assigned a weight of 7 for co-
ordinates, 1 for diameter, 2 for axis ratio 2 logR for the
position angle. After this step 144 721 objects are identi-
fied in LEDA (corresponding to 107 991 galaxies because
some objects appear several times). Thus, 86 553 galaxies
known only in LEDA are added, leading to a catalogue of
3 308 967 galaxies before the merging of repeated galaxies
(or 2 962 664 galaxies if the merging is done). The added
objects are galaxies fainter than the magnitude limit of
the DSS, or low surface brightness galaxies not detectable
by our program, or a few very large objects (larger than
individual frame).



28 G. Paturel et al.: An image database. III.

At this stage we build the mean catalogue where a
galaxy appearing several times is merged into one object.
There is no practical difficulty because each object has
its internal number from the auto-crossidentification step.
Nevertheless, we must take into account that some peri-
odical parameters (like the right ascension or the position
angle) must be treated with special care. For instance,
two measurements of the position angle of a galaxy elon-
gated in the N−S direction may produce, e.g., 175 deg and
5 deg. The mean of both measurements is not 90 deg but
180 deg. After having merged all objects appearing on dif-
ferent plates we obtain a catalogue of 2 876 111 objects.

5.4. Removal of non extragalactic extended objects

Automatic program of galaxy recognition cannot differ-
entiate a true galaxy from, e.g. a planetary nebula or a
globular cluster. Further, filaments in a bright nebula, in
a HII region, in the neighborhood of a very large galaxy or
in the halo of a very bright star can well be recognized as a
galaxy. In order to remove such artefacts we constituted a
catalogue by collecting objects prone to create them. This
catalogue of “forbidden zones” is built from the following
objects:

– Bright stars (code ST) brighter than mv = 7 mag
taken from the SAO catalogue (17405 objects);

– Galaxies (code GA) larger than 5′ taken from LEDA
(311 objects);

– Globular clusters (code GC) taken from Harris &
Racine (1979) (160 objects);

– Open clusters (code OC) taken from Lynga (1983)
(1151 objects);

– Bright Nebulae (code BN) taken from Lynds (1965)
(1125 objects);

– HII regions (code H2) taken from Sharpless (1959) (626
objects);

– Planetary Nebulae (code PN) taken from Acker (1992)
(1143 objects).

For stars the forbidden zone is the central circle (diame-
ter Ds = 1.1′) and the branches of the diffraction cross.
The total extension (with both arms) of one branch is es-
timated to B = −3mv + 25 (arcmin). For galaxies, the
forbidden zone is the surface of the ellipse defined by its
axes D25 and d25 (at the isophote 25 mag arcsec−2) and
the position angle of the major axis β (from North towards
East). For all other objects the forbidden zone is the sur-
face of the object assumed to be circular of diameter D.
The forbidden zone catalogue gives for each object: the
code (ST, GA, GC, OC, BN, H2, PN), the right ascension
and declination for equinox 2000, and the parameters for
the definition of the forbidden zone (Ds and B for stars,
D25, d25 and β for galaxies and D for others). This cata-
logue is sorted according to declination and contains 21921
objects.

Table 3. Number of rejected galaxy candidates

Code Object Number of rejection

ST Stars (mv > 7) 4028

GA Galaxies (> 5′) 34 017

H2 HII regions 25 560

GC Globular clusters 1906

OC Open clusters 12 578

BN Bright Nebulae 112 318

PN Planetary Nebulae 196

Total 190 603

Fig. 13. Completeness curve for the main catalogue of 2 772 061
galaxies. The completeness is fulfilled up to 18.2 mag

In Table 3 we give the number of rejected objects for
the different classes of forbidden zones. After these clean-
ing and merging steps 2 772 061 galaxies remain. This
catalogue constitutes the main catalogue from which we
will start to work. A completeness curve made with these
2 772 061 galaxies shows that the completeness limit is
about 18.2 mag (see Fig. 13).

The slope of the linear part is 0.56± 0.01. This is sig-
nificantly less than the theoretical value (0.6). This result
has been permanently found and has been interpreted in
several ways (fractality, incompleteness, flat distribution
of galaxies).

6. Conclusion

After many visual inspections it appears that the method
is very efficient for detecting faint galaxies and for de-
termining their proper size and orientation: low surface
brightness galaxies are well detected; near the galactic
plane many galaxies seen by the eye have been automati-
cally identified and many new galaxies have been discov-
ered. This constitutes an incredible improvement even if
some star-like galaxies are missed and if some artefacts
remain.
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The catalogue has been loaded into the LEDA
database. It considerably changes the management of our
database because in a given field all galaxies brighter than
18th mag are present at their right place. A code has been
assigned to each galaxy to measure the reliability of the
detection. Progressively, the database will be cleaned for
remaining artefacts. Presently, 1 million galaxies can be
accessed through LEDA and the corresponding catalogue
is available electronically.

We will use the catalogue itself with the matrices of
galaxies for several astrophysical purposes:

– Calculation of accurate inclinations from disk flateness
(for spiral galaxies);

– Automatic and impersonal morphological classifica-
tion;

– Estimation of local variation of the galactic extinction
from galaxy counts;

– Definition of environment of a galaxy;
– Analysis of structures (clusters and groups);
– Analysis of correlation functions.

As a by-product we got a catalogue of 50 millions stars. It
is to be noted that among these stars there are compact
extragalactic objects. Some of them will be recovered from
special analysis in preparation.
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R.J., Paturel G., Fouqué P., 1991, Third Reference Catalog
of Bright Galaxies. Springer-Verlag (RC3)

Vauglin I., Paturel G., Borsenberger J., Fouqué P., Epchtein
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