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Abstract. We derive formulae for all parameters defining
the field astigmatism of misaligned two mirror telescopes
with arbitrary geometries and with stop positions any-
where on the line connecting the vertices of the two mir-
rors. The formulae show explicitly the dependence of the
field astigmatism on the fundamental design parameters
and characteristics of the telescope and on the stop posi-
tion. Special attention is given to the particular case where
such a schiefspiegler has been corrected for coma at the
field center. In addition, we study the effects of the prac-
tical definition that the center of the field is the center of
the adapter. Following a recent paper by McLeod, where
the field dependence of astigmatism is used to collimate a
Ritchey-Chretien telescope with the stop at the primary
mirror, we apply our formulae to the Cassegrain focus of
the ESO Very Large Telescope (VLT), where the stop is at
the secondary mirror and the telescope is only corrected
for spherical aberration. We present measurements of the
field astigmatism and discuss the accuracy of the collima-
tion method.
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1. Introduction

A general theory of low order field aberrations of de-
centered optical systems has been given by Shack &
Thompson (1980). In particular it has been shown that
the general field dependence of third order astigmatism
can be described by a binodal pattern, known as ovals of
Cassini. Only for special cases such as a centered system
do the two nodes coincide and the field dependence re-
duces to the well known rotationally symmetric pattern

with a quadratic dependence on the distance to the field
center. These general geometric properties have been used
by McLeod (1996), starting from equations by Schroeder
(1987), for the alignment of an aplanatic two mirror tele-
scope. We shall recall this method briefly.

In a Cassegrain telescope the absence of decentering
coma in the center of the field does not imply that the op-
tical axes of the primary (M1) and the secondary mirrors
(M2) coincide. The axes of the primary and the secondary
mirrors must intersect at the coma free point, but the axis
of M2 may still form an angle α with respect to the axis
of M1. For this case McLeod showed that the components
Z4 and Z5 of third order astigmatism of a two mirror tele-
scope with the stop at the primary mirror for a field angle
θ with components θx and θy are given by
Zsys

4 = B0 (θ2
x − θ2

y) + B1(θxαx − θyαy)

+B2 (α2
x − α2

y) (1)
Zsys

5 = 2B0 θxθy + B1(θxαy + θyαx) + 2B2 αxαy. (2)
B0 is the coefficient of field astigmatism for a centered
telescope, B1 and B2 only appear in decentered systems.
Numerical values for B0, B1 and B2 were obtained by us-
ing general formulae for field astigmatism of individual
mirrors and adding the effects of the two mirrors. The
values for αx and αy could then be obtained from mea-
surements of Zsys

4 and Zsys
5 in the field of the telescope.

For a centered two mirror telescope Wilson (1996) has
derived expressions for the low order field aberrations
including third order astigmatism (B0) showing the de-
pendence on fundamental design parameters and optical
properties of the total telescope and on the position of
the stop along the optical axis. This gives more physi-
cal insight into the characteristics of field aberrations of
two mirror telescopes. Similarly we derive, for decentered
two mirror telescopes, explicit expressions for third or-
der astigmatism, i.e. for the parameters B1 and B2, and
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discuss the field dependence of astigmatism for fundamen-
tal types of two mirror telescopes.

In a centered optical system the field center, projected
towards the sky, is the direction parallel to the optical axis
of M1. The formulae for the parameters B0, B1 and B2 are
initially derived for this reference system. However, in a
decentered system the image of an object in the field cen-
ter is not in the mechanical center of the adapter, where
the instruments are located. For all measurements in the
telescope, the practical field center is the center of the
adapter. The evaluation of the measurements of field astig-
matism has to take this difference of the origins of the ref-
erence systems into account. The structure of the Eqs. (1)
and (2) will remain the same, but the parameters B0, B1

and B2 will change and θ will denote the field angle with
respect to the center of the adapter.

One case of practical interest is the collimation at the
Cassegrain focus of the VLT where the stop is at the
secondary mirror and the telescope is only corrected for
spherical aberration. We apply our formulae to measure-
ments of astigmatism in the field of the Cassegrain focus
to determine the misalignment angles αx and αy. In addi-
tion, the possibility to change the misalignment angles by
well defined values by rotating the primary mirror around
its vertex allows a measurement of the accuracy of this
collimation method.

2. Astigmatism in a misaligned telescope with an
arbitrary pupil position

2.1. General formulation

The general case which we study is shown in Fig. 1. The
notation as well as the sign conventions for the angles and
the distances are taken from Wilson (1996). The following
list defines the parameters. i = 1 stands for the primary
mirror and i = 2 for the secondary mirror.

yi : semi-diameter of the mirror i
f ′i : focal length of the mirror i
spri : distance from the surface to the entrance

pupil of mirror i
bsi : aspheric constant of the mirror i
n′i : index of the exit medium of mirror i
upri : angle of the incoming principle ray with

the axis of the mirror i
hi : distance from the axis of the mirror i to

the center of its entrance pupil
z : distance of the coma-free point from the

surface of M2.
In this whole section the field center is defined as the op-
tical axis of M1, that is upr1 = 0. The stop is located
between the two mirrors at a distance spr2 from M2 and
decentered laterally by a value h from the M1 axis and
h2 from the M2 axis. The entrance pupil is located at a
distance spr1 behind M1 and decentered by h1 from the

M1 axis. The vertex of the secondary mirror is decentered
by a distance δ from the M1 axis and tilted by an angle α
with respect to the M1 axis.

Initially we will only make the assumption that the lat-
eral decenter δ and the rotation of M2 around its vertex
by α are in the same plane.

After a bit of geometry following Fig. 1 we find:

upr2 =
(
spr1

f ′1
− 1
)
upr1 − α − h1

f ′1
(3)

h1 = −h spr1

d1 + spr2
(4)

h2 = h − δ − spr2α. (5)

Knowing the distance spr2 from M2 to the stop in a plane
between M1 and M2 one can calculate spr1 by

spr1 =
spr2 + d1

spr2 + d1 − f ′1
f ′1. (6)

Inversely, spr2 is given by

spr2 =
spr1f

′
1

spr1 − f ′1
− d1. (7)

The coefficient of the astigmatic wavefront aberration of
a two mirror telescope is then given by (Schroeder 1987,
page 79)

cast = D1y
2
1 +D2y

2
2 (8)

Di =
n′i

16f ′3i

(
A0,iu

2
pri + A1,iuprihi + A2,ih

2
i

)
(9)

with the expressions for A0,i given by Schroeder (1987) in
the Tables 5.6 and 5.9 (but adding the missing factor 1/2
in the expressions for astigmatism)

A0,i = bsis
2
pri + (2f ′i − spri)

2 (10)
A1,i = 4f ′i − 2(1 + bsi)spri (11)
A2,i = 1 + bsi. (12)

Introducing the expressions for A0,i, A1,i and A2,i into
Eq. (9) one gets

Di =
n′i

16f ′3i
{[bsis2

pri + (2f ′i − spri)2] u2
pri

+ [4f ′i − 2(1 + bsi)spri] upri hi+(1 + bsi) h2
i }· (13)

Our definition of the wavefront error differs by a factor −1
from the one given by Schroeder (1987), since we use the
convention that a wavefront error is positive if the actual
wavefront is in advance of the reference wavefront.

2.2. Explicit expressions for astigmatism in a
schiefspiegler of general form

2.2.1. Telescope in focal form

In a two mirror telescope as shown in Fig. 1 the horizon-
tal position of the stop may be anywhere to the left of the
primary mirror. For the vertical position h of the stop we
make the simplifying assumption that the center of the
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Fig. 1. Two mirror telescope with general position of M2 and general position of the stop

stop lies on the line connecting the vertices of the two
mirrors. h is then given by

h =
δ

d1
(d1 + spr2)

=
δ

d1

f ′1spr1

spr1 − f ′1
. (14)

With this expression for h one gets for the Eqs. (3), (4)
and (5)

upr2 =
spr1 − f ′1

f ′1
upr1 − α +

δ

d1

spr1

f ′1
(15)

h1 = − δ

d1
spr1 (16)

h2 =
(
δ

d1
− α

) (
spr1f

′
1

spr1 − f ′1
− d1

)
. (17)

Introducing these expressions into Eqs. (13) and (8)
and using the relationships given by Wilson (1996,
Sect. 2.2.5.2)

m2 =
f ′2

f ′1 − f ′2 − d1
(18)

f ′ = m2 f
′
1 (19)

f ′2 =
L

m2 + 1
(20)

L = m2 (f ′1 − d1) (21)

y2 =
L

f ′
y1 (22)

where m2 is the magnification of the secondary mirror,
f ′ the focal length of the two mirror telescope and L is
the distance from the secondary mirror to the focus of
the telescope, one gets with n′1 = −1 and n′2 = 1 for the

coefficients of the astigmatic wavefront aberration

cast = C0u
2
pr1 + C1upr1 + C2 (23)

C0 =
1
4

(
y1

f ′

)2 {
f ′

L
(f ′ + d1)

+
d2

1

L
ξ +

spr1

f ′
(f ′ + 2d1ξ)

+
(
spr1

f ′

)2

(−f ′ζ + Lξ)
}

(24)

C1 =
1
4

(
y1

f ′

)2

{
α

[
(m2 + 1)(f + L+ d1)− spr1

f ′
L(m2

2 − 1)
]

+ δ

[
(m2 + 1)2

(
1 +

d1

2L
(m2 + 1)(1 + bs2)

)
+
spr1

f ′
2
d1

(
d1ξ +

f ′

2

− d1

4
(m2 + 1)2[m2 − 1− (m2 + 1)bs2]

)
+
(
spr1

f ′

)2 2
d1

(−f ′ζ + Lξ)
]}

(25)

C2 =
1
4

(
y1

f ′

)2

{
α2 L(m2 + 1)

+ αδ

[
(m2 + 1)2 − spr1

f ′
L

d1
(m2

2 − 1)
]
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+ δ2

[
1

4L
(m2 + 1)3(1 + bs2)

− spr1

f ′
1

2d1
(m2 + 1)2[m2 − 1− (m2 + 1)bs2]

+
(
spr1

f ′

)2 1
d2

1

(−f ′ζ + Lξ)
]}

(26)

where

ζ =
m3

2

4
(1 + bs1) (27)

ξ =
(m2 + 1)3

4

[(
m2 − 1
m2 + 1

)2

+ bs2

]
. (28)

The expression for C0 is, apart from a factor needed for
the conversion to Seidel coefficients, identical to the one
given by Wilson (1996, Sect. 3.2.4.2).

If the stop is at the primary mirror, the parameters C0,
C1 and C2 should not depend on the asphericity bs1 of the
primary mirror. This can be seen from the Eqs. (24), (25)
and (26), which then depend only on the asphericity bs2 of
the secondary mirror. Similarly, if the stop is at the sec-
ondary mirror, the parameters C0, C1 and C2 should not
depend on the asphericity of the secondary mirror. This
can easily be verified by introducing spr2 = 0 or, equiva-
lently, from Eq. (6), spr1/f

′ = −d1/L into the Eqs. (24),
(25) and (26).

These expressions can be considerably simplified by us-
ing corresponding expressions for other aberration coeffi-
cients of two mirror telescopes (Wilson 1996, Sects. 3.2.4.2
and 3.7.2): cspher of spherical aberration, ccoma,cen of third
order field coma of a centered system, and the coefficients
of field independent third order coma generated by a lat-
eral decenter by δ (ccoma,δ) and by a pure rotation of M2
around its vertex by α (ccoma,α).

cspher =
1
8

(
y1

f ′

)4

(−f ′ζ + Lξ) (29)

ccoma,cen =
1
2

(
y1

f ′

)3 [
− d1ξ −

f ′

2

−spr1

f ′
(−f ′ζ + Lξ)

]
upr1 (30)

ccoma,δ =
1
4

(
y1

f ′

)3

[
1
2

(m2 + 1)2 [m2 − 1− (m2 + 1)bs2]

+
spr1

f ′
2
d1

(−f ′ζ + Lξ)
]
δ (31)

ccoma,α =
1
4

(
y1

f ′

)3

L(m2
2 − 1) α. (32)

With the further definitions

ccoma,cen = c∗coma,cen upr1 (33)

C0,0 =
1
4

(
y1

f ′

)2 [
f ′

L
(f ′ + d1) +

d2
1

L
ξ

]
(34)

C1,0 =
1
4

(
y1

f ′

)2 [
α (m2 + 1)(f + L+ d1)

+ δ (m2 + 1)2

(
1 +

d1

2L
(m2 + 1)(1 + bs2)

)]
(35)

C2,0 =
1
4

(
y1

f ′

)2 [
α2 L(m2 + 1)

+ αδ (m2 + 1)2+δ2 1
4L

(m2 + 1)3(1 + bs2)
]
. (36)

Equations (24), (25) and (26) can be written as

C0 = C0,0 −
spr1

y1
c∗coma,cen −

(
spr1

y1

)2

2 cspher (37)

C1 = C1,0

− spr1

y1

(
δ

d1
c∗coma,cen + ccoma,α + ccoma,δ

)
+
(
spr1

y1

)2

4
δ

d1
cspher (38)

C2 = C2,0 −
spr1

y1

δ

d1
(ccoma,α + ccoma,δ)

+
(
spr1

y1

)2

6
(
δ

d1

)2

cspher. (39)

These equations show a nice symmetry of the stop-shift
terms. The linear terms are proportional to coefficients of
coma and the quadratic terms are proportional to the co-
efficient of spherical aberration. The total coma in the lin-
ear coefficient of C1 is the sum of the coma for a centered
system for a principal ray with the angle δ/d1, which, in
the decentered system, is the angle of the principal ray
connecting the vertices of the two mirrors, and the coma
contributions from a pure decenter of M2 by δ and a pure
rotation of M2 around its vertex by α. The total coma
in the linear coefficient of C2 contains only the two latter
contributions.

2.2.2. Telescope in afocal form

Equations (29) to (39) can be converted into equations
valid for afocal telescopes, where both the total focal
length f ′ and the position of the focus, which is linked
to L, go to infinity. One can eliminate f ′ and L in favour
of f ′1, d1 and m2 with the Eqs. (19) and (21) and then let
m2 go to infinity. This gives

cspher,af =
1
32

(
y1

f ′1

)4 [
− f ′1(1 + bs1)

+ (f ′1 − d1)(1 + bs2)
]

(40)

ccoma,cen,af = −
[

1
8

(
y1

f ′1

)3

d1(1 + bs2)

+ 4
spr1

y1
cspher,af

]
upr1 (41)
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ccoma,δ,af =
[

1
8

(
y1

f ′1

)3

(1− bs2)

+
spr1

y1

4
d1
cspher,af

]
δ (42)

ccoma,α,af =
1
4

(
y1

f ′1

)3

(f ′1 − d1) α (43)

C0,0,af =
1
16

(
y1

f ′1

)2
d2

1

f ′1 − d1
(1 + bs2) (44)

C1,0,af =
1
4

(
y1

f ′1

)2 [
α (2f ′1 − d1)

+ δ

(
1 +

d1

2(f ′1 − d1)
(1 + bs2)

)]
(45)

C2,0,af =
1
4

(
y1

f ′1

)2 [
α2 (f ′1 − d1) + αδ

+ δ2 1 + bs2
4(f ′1 − d1)

]
. (46)

Equations (37), (38) and (39) for focal telescopes are then
also valid for afocal telescopes if all expressions in these
formulae are replaced by the corresponding expressions
(40) to (46) for afocal telescopes.

2.3. Explicit expressions for astigmatism in a coma-free
schiefspiegler

2.3.1. Telescope in focal form

A further simplification is possible if the telescope is cor-
rected for coma at the center of the field, that is for
upr1 = 0. The axes of M1 and M2 must then intersect
at the coma-free point Pcfp. The distance from the vertex
of M2 to Pcfp is denoted by z. The lateral decenter δ and
the misalignment angle α are then related by δ = −αz.
z can be calculated from the requirement that the contri-
butions to decentering coma from a pure lateral decenter
δ and the simultaneous rotation α = −δ/z cancel.

ccoma,δ + ccoma,α = 0. (47)

This gives, using the Eqs. (31) and (32),

z = 2L
m2 − 1
m2 + 1

· (48)

· 1
m2 − 1− (m2 + 1)bs2 − spr1

f ′
4

(m2+1)2d2
1
(−f ′ζ + Lξ)

·

This equation shows that the position of the coma-free
point depends on the stop position. If the stop is at the
primary mirror or if the telescope is corrected for spherical
aberration, z depends, for a given telescope geometry L
and m2, only on the aspheric constant bs2 of the secondary
mirror.

z = 2L
m2 − 1
m2 + 1

1
m2 − 1− (m2 + 1)bs2

· (49)

If the stop is at the secondary mirror z depends, for a given
telescope geometry L and m2, only on the asphericity bs1
of the primary mirror.

z = 2L
m2

2 − 1
2m2(m2

2 − 1)− f ′

Lm
3
2(1 + bs1)

· (50)

The coefficient cast of third order astigmatism can then be
expressed as

cast = B0u
2
pr1 +B1upr1α+B2α

2 (51)

with

B0 = C0 (52)

B1 = −1
4

(
y1

f ′

)2
z

d1

[
f ′d1

L

(m2 + 1)3

m2 − 1
bs2

+
spr1

f ′

(
f ′ + 2d1ξ

+2
2L+ (m2 + 1)d1

(m2 − 1)L
(−fζ + Lξ)

)]
(53)

B2 =
1
4

(
y1

f ′

)2 (
z

d1

)2 [
d2

1

L

(
m2 + 1
m2 − 1

)2

bs2 ξ

+
spr1

f ′
2d1

L

(
m2 + 1
m2 − 1

)2

bs2(−fζ + Lξ)

+
(
spr1

f ′

)2

(−fζ + Lξ)(
4

(m2 − 1)2(m2 + 1)
−fζ + Lξ

L
− 1
)]

.(54)

Equations (52), (53) and (54) show that the parameters
Bi are proportional to (z/d1)i. At a first glance they seem
to be linear or quadratic equations in spr1/f

′. This is only
the case for B0 since the distance z of the coma-free point
appearing in B1 and B2 depends itself on the stop posi-
tion, as can be seen from Eq. (49).

By introducing z = −δ/α in the Eqs. (52), (53) and
(54) the coefficient of third order astigmatism can be ex-
pressed as a polynomial in upr1 and δ, that is

cast = B0u
2
pr1 +B

(δ)
1 upr1δ +B

(δ)
2 δ2. (55)

It is easy to see that now the parameter B(δ)
1 is a linear

function and the parameters B0 and B
(δ)
2 are quadratic

functions in spr1.
Exactly as with C0, C1 and C2 the parameters B0, B1

and B2 depend only on the asphericity bs2 of M2, if the
stop is at the primary mirror, and only on the asphericity
bs1 of M1, if the stop is at the secondary mirror.

Since the coupling between α and δ through z involves
the expression for spherical aberration, the symmetry of
the stop-shift terms has disappeared. But, the telescope
will usually be corrected for spherical aberration. In this
case all terms containing −f ′ζ + Lξ vanish. Then, with
the additional definitions

B0,0 =
1
4

(
y1

f ′

)2 [
f ′

L
(f ′ + d1) +

d2
1

L
ξ

]
(56)
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B1,0 = −1
4

(
y1

f ′

)2
f ′d1

L

(m2 + 1)3

m2 − 1
bs2 (57)

B2,0 =
1
4

(
y1

f ′

)2
d2

1

L

(
m2 + 1
m2 − 1

)2

bs2 ξ. (58)

Equations (52), (53) and (54) reduce to

B0 = B0,0 −
spr1

y1
c∗coma,cen (59)

B1 =
z

d1

(
B1,0 +

spr1

y1
c∗coma,cen

)
(60)

B2 =
(
z

d1

)2

B2,0. (61)

The distance z from the secondary mirror to the coma-
free point and the expression c∗coma,cen are now no longer
dependent on the stop position. Therefore, B0 and B1 are
linear functions of the stop position and B2 is independent
of the stop position.

2.3.2. Telescope in afocal form

The Eqs. (59), (60) and (61), all valid for focal telescopes
corrected for spherical aberration, can be converted into
equations valid for afocal telescopes, also corrected for
spherical aberration, by using Eqs. (21) and (19) and let-
ting m2 go to infinity. The distance from M2 to the coma-
free point is then

z = 2
f ′1 − d1

1− bs2
. (62)

For a classical or aplanatic afocal telescope the coma-free
point is in the focus of M1. The astigmatism parameters
are given by

B0 =
1
4

(
y1

f ′1

)2

(1 + bs2)
[

1
4

d2
1

f ′1 − d1
+ spr1

d1

2f ′1

]
(63)

B1 = −1
4

(
y1

f ′1

)2 1
1− bs2

[
2f ′1bs2

+ spr1
f ′1 − d1

f ′1
(1 + bs2)

]
(64)

B2 =
1
4

(
y1

f ′1

)2 1 + bs2
(1− bs2)2

bs2 (f ′1 − d1). (65)

For a Mersenne telescope with bs1 = bs2 = −1 one ob-
tains immediately B0 = B2 = 0. This gives therefore pure
linear astigmatism which is proportional to the misalign-
ment angle α with the center of the pattern at the center
of the field. This is a nice example of the general state-
ment by Shack & Thompson (1980) that a system which is
free of astigmatism in the centered configuration will show
either linear or constant astigmatism in the decentered
configuration.

2.4. Conclusions for specific types of telescopes and stop
positions

2.5. Specific stop positions at coma-free schiefspieglers

For a general coma-free schiefspiegler the following conclu-
sions can be drawn for the stop positions at the primary
and secondary mirrors.

– Stop at the primary mirror
For a spherical secondary (bs2 = 0) the Eqs. (53)
and (54) show that one has, as for a centered system,
B1 = B2 = 0. Because of z = 2f ′2 the coma-free point
is at the center of curvature of M2. Since a rotation of
a spherical mirror around its center of curvature does
not change the optical characteristics of the telescope,
the astigmatism pattern has to be the same as the one
of the centered system.
If ξ = 0, one has B2 = 0, that is one node is at the
position of the image corresponding to the field center.

– Stop at the secondary mirror
If one uses the substitution spr1/f = −d1/L in Eq. (54)
one can show that B2 is proportional to ζ. Therefore,
for a coma-free schiefspiegler with a parabolic primary
mirror one node is at the position of the image corre-
sponding to the field center.

2.6. Specific types of coma-free schiefspieglers corrected
for spherical aberration

From the general formulae given above more specific con-
clusions can be drawn if the telescopes is corrected for
spherical aberration. In all cases we will also discuss the
results in the limit of large magnifications, defined here as
m2 → ∞ together with a finite distance L from the sec-
ondary mirror to the focus. The semi-diameter y2 of M2,
its radius of curvature 2f ′2 and the difference between f ′1
and d1 will go to zero. This is different from the case of
an afocal telescope, where L goes to infinity, while y2, 2f ′2
and f ′1 − d1 remain finite. For the limit case with finite L
we get from Eqs. (56) to (58) the following expressions for
the astigmatism parameters:

Stop at M1 Stop at M2

B0 → +
1
16
y2

1

L
(1 + bs2)m2 − 1

16
y2

1

L
(1 + bs2)m2

+
1
4
y2

1

L
+

1
4
y2

1

L

B1 → −1
2
y2

1

f ′1

bs2
1− bs2

1
4
y2

1

f ′1
B2 → 0 0.

(66)

We now discuss a few telescope types.

– Classical telescope
The primary mirror is parabolic and ξ = 0. Therefore
B2 vanishes. The consequence of this is that one of
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the two nodes is exactly at the image position for an
object on the axis of the primary mirror, that is with
upr1 = 0.
For the limit of large magnifications one has bs2 → −1
and therefore from Eq. (66) independently of the stop
position:

B0 →
1
4
y2

1

L

B1 →
1
4
y2

1

f ′1
(67)

B1

B0
→ L

f ′1
·

Since the distance L between the vertex of M2 and the
focus will generally be similar to the focal length of
M1 the ratio B1/B0 will be close to −1.

– Ritchey-Chretien telescope
All three parameters are independent of the stop
position, since, in addition to spherical aberration,
coma is zero as well. Since modern Ritchey-Chretien
telescopes with large values of m2 are very close to
classical telescopes, the conclusions drawn for classical
telescopes will be approximately valid. That is, B2

will be much smaller than B0 and B1, a point also
discussed by Wilson (1999, Sect. 2.2.1), and the ratio
B1/B0 will be close to −1.

– Telescope with a spherical secondary mirror (Dall-
Kirkham)
Because of bs2 = 0 the parameter B2 is zero and B1

is only proportional to the coma of the telescope. One
node is therefore at the image position corresponding
to the field center with upr1 = 0. If, in addition, the
stop is at the primary mirror, B1 is also zero. In that
case the two nodes coincide and one has pure quadratic
astigmatism with the center on the axis of the primary
mirror.
For the limit of large magnifications one has from
Eq. (66):

Stop at M1 Stop at M2

B0 → +
1
16
y2

1

L
m2 − 1

16
y2

1

L
m2

B1 → 0
1
4
y2

1

f ′1
B1

B0
→ 0 −4

L

f ′
·

(68)

Whereas B1 converges to values independent of m2, B0

is proportional to m2. The binodal nature of the field
astigmatism diminishes therefore linearly with increas-
ing magnification of the telescope. For a certain stop
position between the primary and the secondary mirror
the coefficient B0 of quadratic astigmatism vanishes.
For the VLT with the Nasmyth focus the stop would be
3.9 m in front of the secondary mirror. The coefficient
of linear astigmatism would be small,B1 ≈ 22µm/deg,
but the coefficient of field coma would be very large,
c∗coma,cen ≈ 660µm/deg.

– Telescope with a spherical primary mirror
For large magnifications we have in the limit m2 →∞
bs2 → m2f

′
1/L and then from Eq. (66):

Stop at M1 Stop at M2

B0 →
1
16

(y1

L

)2

f ′1m
2
2 − 1

16

(y1

L

)2

f ′1m
2
2

B1 →
1
2
y2

1

f ′1

1
4
y2

1

f ′1

B1

B0
→ 8

(
L

f ′

)2

−4
(
L

f ′

)2

(69)

B1 converges to values independent of m2. The limit
values of B0 are by a factor m2f

′
1/L larger than the

ones for a telescopes with a spherical secondary. The
binodal nature of the field astigmatism diminishes
therefore quadratically with increasing magnification
of the telescope.

2.7. Numerical examples for the VLT

In this sections we give numerical examples for the
Cassegrain focus of the VLT telescope. The optical
parameters used for these calculations are summarized in
the following table.

2f ′1 −28804.832 mm 2f ′2 −4553.561 mm
bs1 −0.996962 bs2 −1.66926
y1 4057.50 mm y2 556.55 mm
d1 −12426.946 mm
z −1997.995 mm
L 14926.950 mm
m2 −7.556

If the pupil was located at the primary mirror, we would
have spr1 = 0. This would give the following numerical
values for the parameters B0, B1 and B2.

B0 = +71.788 µm/deg2

B1 = −84.784 µm/deg2

B2 = +0.06630 µm/deg2. (70)

As has been discussed before, the value of B2 is effectively
negligible compared with the values of B0 and B1 and the
ratio B1/B0 is approximately equal to −1.

In reality the pupil is located at the secondary mir-
ror. Then spr2 = 0 and from Eq. (6) one gets spr1 =
90600.23 mm. This gives the following numerical values
for the parameters:

B0 = +86.614 µm/deg2

B1 = −87.167 µm/deg2

B2 = +0.06630 µm/deg2. (71)

Since the spherical aberration is zero the value of B2 is, as
can be seen from Eq. (54), identical to the one for the stop
at the primary mirror. But, there is a significant difference
between the values of B0 for the two stop positions.
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Fig. 2. Pure lateral decenter of M2 by δ. C2 is the center of
curvature of M2
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Fig. 3. Pure rotation of M2 by α around its vertex. C2 is the
center of curvature of M2

3. Recalculation of the coefficients B0, B1 and B2 for
the center of the adapter

3.1. Introduction

In the formulae given above the center of the field is de-
fined by upr1 = 0 and corresponds to the direction of a
star located on the M1 axis. In a decentered telescope the
rays coming from such a star do not focus in the center of
the adapter.

The center of the adapter is however always defined as
being the center of the field in a telescope and field mea-
surements are made with reference to this point. In this
section we first calculate the offset angles of the telescope
corresponding to the misalignment of M2 and then the
effect of these offsets on the parameters B0, B1 and B2.

3.2. Depointing of the telescope for a pure lateral
decentering of M2

– Depointing for a pure lateral decentering of M2
If M2 is laterally decentered by δ (see Fig. 2) the star
centered in the adapter is producing an angle θoffset,d

with the M1 axis:

θoffset,d = − L

f ′2f
′ δ. (72)

For the VLT at the Cassegrain focus the factor in front
of δ is −6.025 10−5/mm.

– Depointing for M2 tilted around its vertex
If M2 is tilted by an angle α around its pole
(see Fig. 3), the star centered on the adapter is
producing an angle θoffset,t with the M1 axis.

θoffset,t =
−2L
f

α. (73)

For the VLT at the Cassegrain focus the factor in front
of α is −0.2743.

– Depointing for M2 rotated around the coma-free point
When M2 is rotated around its coma-free point by an
angle α we have a combination of pure tilt and lateral
decentering with δ = −αz. The resulting offset of the
telescope is

θoffset,cfp = θoffset,t + θoffset,d

= T α (74)

with

T =
−L
f

(
2− z

f ′2

)
. (75)

For the VLT at the Cassegrain focus one has T =
−0.1539.

3.3. New coefficients B0, B1 and B2 with reference to the
center of the adapter

To get the coefficients B0, B1 and B2 with the reference of
the field in the center of the adapter, we define new field
angles as

θ′ = θ − T α. (76)

Replacing then θ by θ′ + Tα in the Eqs. (1) and (2) leads
to

Zsys
4 = B′0 (θ

′2
x − θ

′2
y ) + B′1(θ′xαx − θ′yαy)

+B′2 (α2
x − α2

y) (77)
Zsys

5 = 2B′0 θ
′
xθ
′
y + B′1(θ′xαy + θ′yαx) + 2B′2 αxαy. (78)

Equations (77) and (78) are similar to Eqs. (1) and (2),
but with different coefficients B′0, B′1 and B′2. The new
parameters B′0, B′1 and B′2 are given by

B′0 = B0

B′1 = B1 + 2B0T

B′2 = B2 +B1T +B0T
2. (79)
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For the VLT with the pupil at M1

B0 = +71.788 µm/deg2 B′0 = +71.788 µm/deg2

B1 = −84.783 µm/deg2 B′1 = −106.888 µm/deg2

B2 = +0.0663 µm/deg2 B′2 = +14.821 µm/deg2.

For the VLT with the pupil at M2

B0 = +86.614 µm/deg2 B′0 = +86.614 µm/deg2

B1 = −87.167 µm/deg2 B′1 = −113.837 µm/deg2

B2 = +0.0663 µm/deg2 B′2 = +15.539 µm/deg2.

In both cases the new coefficients B′1 are approximately
30% larger than the original coefficients B1.

3.4. Effects of the correction of coma at the center of the
adapter

The formulae in Sect. 2.3 have been derived under the
assumption that the telescope was a coma-free schief-
spiegler. This means that the telecope is corrected for
coma for the field center with upr1 = 0. But, in reality
the coma correction will ensure that the telescope is free
of coma at the center of the adapter. The formulae de-
rived above can therefore, strictly speaking, not be applied
to non-aplanatic telescopes. But, a short calculation will
show that, in practice, the inaccuracies introduced by this
effect are negligible.

Equation (74) gives the relationship between the mis-
alignment angle and the corresponding field angle. The
coefficient of coma for this field angle can then be cal-
culated from Eq. (30). Finally, one needs the coefficient
ccoma,coc of coma generated by a rotation around the cen-
ter of curvature of M2 by an angle ϕ. This can be derived
by combining the expressions for coefficients of coma gen-
erated by a pure lateral decentering by δ and a rotation
around the vertex of M2 by an angle upr2 (see Eqs. (31)
and (32)). If δ and upr2 are related by δ = −2f ′2upr2 the
total effect is a rotation around the center of curvature of
M2. One then obtains

ccoma,coc =
1
4

(
y1

f ′

)3

(m2 − 1)
f ′L

z
T ϕ. (80)

Combining the three Eqs. (74), (30) and (80) gives the
rotation angle ϕ of M2 which shifts the coma correction
from the field center with upr1 = 0 to the center of the
adapter.

ϕ = − (2d1ξ + f ′) z
(m2 − 1)f ′L

α

= − 2 α
(m2 + 1)[m2 − 1− (m2 + 1)bs2]

2d1ξ + f ′

f ′
· (81)

For a classical telescope this reduces to the simple
expression

ϕclass = − 1
m2(m2 − 1)

α· (82)

Since the VLT is optically very close to a classical tele-
scope and m2 = −7.556, ϕ is approximately fifty times
smaller than α. This shows that the difference between
a schiefspiegler with coma corrected for the center of the
field and one with coma corrected for the center of the
adapter is negligible. The formulae for field astigmatism
derived above for a schiefspiegler free of coma at the center
of the field can therefore also be used for a schiefspiegler
with coma corrected for the center of the adapter.

3.5. Simulation for the ESO 3.6 m telescope

As an example we checked our formula with a simulation
done with Zemax for the 3.6 m telescope on La Silla. We
simulated M2 tilted around the coma-free point by an an-
gle α = 0.21136◦, which corresponds to an unusually large
decenter of δ = 10 mm.

The values of astigmatism calculated at different field
positions by Zemax were entered into our fitting software.
Two fittings were done, one with the set of parameters
B0, B1, B2 for the original field center and one with the
set B′0, B′1 and B′2 for the field center at the center of the
adapter. With the first set we find α = 0.3867◦ with a
residual wavefront rms of 697.2 nm. With the second set
we find α = 0.21041◦, very close to the input value, with
a small residual rms of 10.2 nm.

4. Misalignment measurements at the VLT

4.1. General procedure

The VLT has both Nasmyth and Cassegrain focii. It is op-
timised to be a Ritchey-Chretien telescope at the Nasmyth
focus. The Cassegrain focus has a different aperture ra-
tio from that of the Nasmyth focus. To switch from the
Nasmyth to the Cassegrain focus one has to change the
distance between the mirrors (done by refocussing with
M2) and bend the primary mirror to remove spherical
aberration. In its Cassegrain configuration the telescope
is no longer aplanatic. Furthermore, the stop is at the sec-
ondary mirror. For the measurement of the misalignment
using the features of the field astigmatism one therefore
has to use the constants B′0, B′1 and B′2 given at the end
of Sect. 3.3.

The measurement procedure is then as follows. The
telescope is first corrected for coma at the center of the
adapter. With B′0,B′1 andB′2 known, the values for αx and
αy could, in principle, be obtained from one measurement
of Zsys

4 and Zsys
5 somewhere in the field of the telescope.

But, in large telescopes field independent astigmatism can
easily be generated elastically. In addition, the measure-
ments are, for example due to local air effects, not free of
noise. Therefore, it will be necessary and more accurate
to do measurements at several locations in the field and
obtain the values for αx and αy with a least squares fit.
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Fig. 4. Change of α due to a rotation of M1 around its vertex

We use typically eight measurements at evenly distributed
points at the edge of the field. Such eight measurements
would at least take fifteen minutes. During this time the
VLT optics changes, because of elastic deformations due
to changes of the zenith distance, significantly. In particu-
lar, the aberrations decentering coma and astigmatism are
strongly affected. Therefore, we had to do a closed loop
active optics correction at the center before each measure-
ment at the edge and, in addition, had to subtract the
variation generated by the change of altitude between the
correction at the center and the measurement at the edge.

4.2. Measurement of the accuracy of the method

By changing the misalignment in a well defined way it is
possible to estimate the accuracy of this method. The VLT
has got the useful feature that the primary mirror can be
moved by motors in five degrees of freedom. The only full
body movement which cannot be remotely controlled, is a
movement in the direction which is perpendicular to the
optical and to the altitude axis. This allows that, in partic-
ular, the primary mirror can be tilted arbitrarily around
its vertex. We can therefore modify the misalignment an-
gle ∆α between the primary and secondary mirror very
accurately. By measuring afterwards ∆α we can therefore
check the accuracy of the method described above and, in
addition, the validity of the theoretical parameters B′0, B′1
and B′2.

The expected change ∆α of the angle between the axes
of the primary and secondary mirrors due to a rotation

of the primary mirror around its vertex can be deduced
from Fig. 4. In an initially perfectly aligned telescope first
the primary mirror has been rotated around its vertex by
∆φ1. Afterwards decentering coma has been corrected by
rotating the secondary mirror by ∆β around its center of
curvature. The axes of the primary and secondary mirrors
then intersect at the coma-free point Pcfp. For small angles
we get

∆β = − d1 − z
2f ′2 + z

∆φ1. (83)

The angle between the axes of the primary and secondary
mirrors is then
∆α = ∆β −∆φ1. (84)
The derivation of the change of the angle ∆α between the
axes of the primary and secondary mirrors does, at least
for small initial misalignments, not depend on the actual
initial state of the telescope. Equation (84) is therefore
always correct.

With the VLT parameters one gets
∆α = −6.64∆φ1. (85)

4.3. Measurement data

The first mapping was done for the initial setup of the
telescope. The second and third mappings were done af-
ter tilting the primary mirror around it vertex around two
orthogonal axes A and B each time by 20′′.

For a rotation of the primary mirror around its vertex
by 20′′ one expects a change ∆α = 132.8′′.
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In addition, a rotation around the vertex will shift
the whole pattern due to the tilt of the M1 axis, but the
shift is only of the order of 0.5′′ on the sky and therefore
negligible.

The three mappings gave the following results for the
x- and y-components of α (all figures in arcseconds).

∆φ αx αy ∆αx ∆αy ∆α
0 39.24 149.18
20 A 38.52 285.23 −0.72 136.05 136.05
20 B 179.17 142.67 139.93 −6.51 140.08

The total change ∆α of the misalignment is defined by
∆α =

√
(∆αx)2 + (∆αy)2. The average of the measured

changes of the misalignment angles ∆α between the first
and the second configuration on the one hand and the
first and the third configuration on the other hand is
∆α = 138.07′′. The difference to the expected value
∆α = 6.64 · 20′′ = 132.8′′ is only 5.3′′. If, after a rota-
tion of the secondary mirror around the coma free point a
similar accuracy is achieved, the two nodes of the binodal
field will only be 7′′ apart. At the edge of the field of 0.25◦

this would lead to an error in the coefficient of third order
astigmatism of 56 nm, which is negligible.

5. Summary

Explicit expressions in terms of fundamental telescope
parameters of a two mirror telescope can be derived for the

coefficients describing the field dependence of third order
astigmatism. Of particular importance is the dependence
of the coefficients on the position of the stop. In addition,
these parameters are recalculated for a reference system
where the center of the adapter is at the origin. The
numerical values are used to show that from the measure-
ment of the field dependence of third order astigmatism
at eight locations in the pupil the axes of the primary
and secondary mirrors of the VLT can be aligned with an
accuracy of approximately 7′′.
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