Gamma-ray burst beaming constraints from afterglow light curves

J.E. Rhoads

Kitt Peak National Observatory, NOAO, P.O. Box 26732, Tucson, AZ 85726-6732, U.S.A.

e-mail: rhoads@noao.edu

Received December 24, 1998; accepted April 29, 1999

Abstract. The beaming angle ζ_m is the main uncertainty in gamma ray burst energy requirements today. We summarize predictions for the light curves of beamed bursts, and model the R band light curve of GRB 970508 to derive $\zeta_m \gtrsim 30^\circ$. This yields an irreducible minimum energy requirement of 3.4×10^{49} ergs to power the afterglow alone.

Key words: gamma-ray: bursts

1. Beamed gamma-ray burst afterglow models

In the Rome meeting I presented a derivation of the dynamical behavior of a beamed gamma ray burst (GRB) remnant and its consequences for the afterglow light curve. (Cf. Rhoads 1999 [Paper I]). Here, I summarize these results and apply them to test the range of beaming angles permitted by the optical light curve of GRB 970508.

Suppose that ejecta from a GRB are emitted with initial Lorentz factor Γ_0 into a cone of opening half-angle ζ_m and expand into an ambient medium of uniform mass density ρ with negligible radiative energy losses. Let the initial kinetic energy and rest mass of the ejecta be E_0 and M_0, and the swept-up mass and internal energy of the expanding blast wave be M_{acc} and E_{int}. Then energy conservation implies $\Gamma E_{\text{int}} \approx \Gamma^2 M_{\text{acc}} c^2 \approx E_0 \approx \text{constant}$ so long as $1/\Gamma_0 \lesssim M_{\text{acc}}/M_0 \lesssim \Gamma_0$.

The swept-up mass is determined by the working surface area: $dM_{\text{acc}}/dr = \pi (\zeta_m r + c_s t_{\text{co}})^2$, where c_s and t_{co} are the sound speed and time since the burst in the frame of the blast wave + accreted material. Once $\Gamma \lesssim 1/\zeta_m$, $c_s t_{\text{co}} \gtrsim \zeta_m r$ and the dynamical evolution with radius r changes from $\Gamma \propto r^{-3/2}$ to $\Gamma \propto \exp(-r/r_*)$ (Rhoads 1998, & Paper I). The relation between observer frame time t_\odot and radius r also changes, from $t_\odot \propto r^{1/4}$ to $t_\odot \propto \exp(r/[2r_*])$. Thus, at early times $\Gamma \propto t_\odot^{-3/8}$, while at late times $\Gamma \propto t_\odot^{-1/2}$. The characteristic length scale is $r_\star = (E_0/\pi^2 c^4 \rho)^{1/3}$, and the characteristic observed transition time between the two regimes is $t_{\odot,b} \approx 1.125 (1 + z) \left(E_0 c^3/\rho \zeta_m^2 r_\star \right)^{1/3} z^{-8/3} \zeta_m^{-3}$, where z is the burst’s redshift.

We assume that swept-up electrons are injected with a power law energy distribution $N(E) \propto E^{-p}$ for $E = \gamma e mc^2 > E_{\text{min}} \approx \zeta_m m_i c^2 \Gamma$, with $p > 2$, and contain a fraction ξ_e of E_{int}. This power law extends up to the cooling break, E_{cool}, at which energy the cooling time is comparable to the dynamical expansion time of the remnant. Above E_{cool}, the balance between electron injection (with $N_{\text{inj}} \propto E^{-p}$) and cooling gives $N(E) \propto E^{-(p+1)}$.

We also assume a tangled magnetic field containing a fraction ξ_B of E_{int}. The comoving volume V_{\odot} and burster-frame volume V are related by $V_{\odot} \approx V/\Gamma \propto M_{\text{acc}}/\Gamma$, so that $B^2 = 8\pi \xi_B E_{\text{int}}/V_{\odot} \propto \Gamma^2$ and $B \propto \Gamma$.

The resulting spectrum has peak flux density $F_{\nu,\odot,m} \propto \gamma B M_{\text{acc}}/\max(c_s^2, \gamma^{-2})$ at an observed frequency $\nu_{\odot,m} \propto \gamma B E_{\text{min}}^{1/2}/(1 + z) \propto \Gamma^4/(1 + z)$. Additional spectral features occur at the frequencies of optically thick synchrotron self absorption (which we shall neglect) and the cooling frequency ν_{cool} (which is important for optical observations of GRB 970508). The cooling break frequency follows from the relations $\gamma_{\text{cool}} \approx (6\pi \nu_{\text{inj}} c^2)/(\sigma_T B_\odot^2)$ (Sari et al. 1998; Wijers & Galama 1998) and $\nu_{\text{cool}} \propto \Gamma \gamma B_\odot^2 E_{\text{min}}^{2/3} (1 + z)^{1/3}/(1 + z)$. For the power law regime, $F_{\nu,\odot,m} \propto \nu_{\text{cool}}^{-\beta}$, $\nu_{\text{cool}} \propto \Gamma_{\text{cool}}^{-1/2}$, and $\nu_{\text{cool}} \propto \Gamma_{\text{cool}}^{1/2}$; while in the exponential regime, $F_{\nu,\odot,m} \propto \nu_{\text{cool}}^{-\beta}$, $\nu_{\text{cool}} \propto \Gamma_{\text{cool}}^{-1/2}$, and $\nu_{\text{cool}} \propto \Gamma_{\text{cool}}^{1/2}$. The spectrum is approximated by a broken power law, $F_{\nu} \propto \nu^{-\beta}$, with $\beta \approx -1/3$ for $\nu < \nu_{\text{cool}}$, $\beta \approx (p - 1)/2$ for $\nu_{\text{cool}} < \nu < \nu_{\text{cool}}$, and $\beta \approx p/2$ for $\nu > \nu_{\text{cool}}$.

The afterglow light curve follows from the spectral shape and the time behavior of the break frequencies. Asymptotic slopes are given in Table 1. For the $\Gamma \sim 1/\zeta_m$ regime, we study the evolution of break frequencies numerically. The results for $\nu_{\odot,m}$ and $F_{\nu,\odot,m}$ are given in Paper I. For ν_{cool}, a good approximation is

$$\nu_{\text{cool}} = \left[5.89 \times 10^{13} \left(t_{\odot}/t_{\odot,b} \right)^{-1/2} + 1.34 \times 10^{14} \right] \text{Hz}$$

$$\times \left(\frac{1}{1 + z} \right) \left(\frac{c_s}{c/\sqrt{3}} \right)^{17/6} \left(\frac{\zeta_m}{0.1} \right)^{-3/2}.$$
Table 1. Light curve exponents α as a function of frequency and time. Here $F_{\nu,\odot} \propto \nu^{\alpha}$.

<table>
<thead>
<tr>
<th>$\nu_{\text{abs}} < \nu < \nu_{\text{m}}$</th>
<th>$\nu_{\text{m}} < \nu < \nu_{\text{cool}}$</th>
<th>$\nu_{\text{cool}} < \nu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t_{\odot} \ll t_{\odot,b}$</td>
<td>$1/2$</td>
<td>$3/4 - 3p/4$</td>
</tr>
<tr>
<td>$t_{\odot} \gg t_{\odot,b}$</td>
<td>$-1/3$</td>
<td>$-p$</td>
</tr>
</tbody>
</table>

Table 2. Fitted break times $t_{\odot,b}$ and magnitudes $R_\odot(t_B)$ (at fiducial observed time $t_0 = 3.231$ day) for beamed GRB afterglow models for three pairs of acceptable host galaxy magnitude R_\odot and electron power law index p. The fit included all 43 data points within 1.3 day $\leq t_\odot \leq 95$ day in the compilation by Garcia et al. (1998).

<table>
<thead>
<tr>
<th>Model</th>
<th>R_\odot</th>
<th>p</th>
<th>$\log(t_{\odot,b}/\text{day})$</th>
<th>$R_\odot(t_0)$</th>
<th>χ^2/d.o.f.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.74</td>
<td>2.369</td>
<td>3.75</td>
<td>20.32</td>
<td>3.80</td>
</tr>
<tr>
<td>2</td>
<td>25.55</td>
<td>2.205</td>
<td>9</td>
<td>20.32</td>
<td>3.55</td>
</tr>
<tr>
<td>3</td>
<td>25.36</td>
<td>2.04</td>
<td>3.75</td>
<td>20.32</td>
<td>3.55</td>
</tr>
</tbody>
</table>

$\times \left(\frac{\rho \cdot \text{cm}^3}{10^{-24} \text{g}} \right)^{-5/6} \left(\frac{E_0/10^{53} \text{erg}}{\zeta_{\odot}^{8}/4} \right)^{-2/3} \left(\frac{\zeta_{\odot}}{0.1} \right)^{-4/3}.$

2. Application to GRB 970508

In the best-sampled GRB afterglow light curve yet available (the GRB 970508 R band data), the optical spectrum changed slope at $t_\odot \sim 1.4$ day, suggesting the passage of the cooling break through the optical band (Galama et al. 1998). We explore the range of acceptable beaming angles for this burst by fitting the afterglow light curve for 1.3 day $\leq t_\odot \leq 95$ day assuming that $\nu_{\odot,\text{cool}} < c/0.7 \mu\text{m}$.

The range of acceptable energy distribution slopes p for swept-up electrons is taken from the optical colors. Precise measurements for 2 day $\leq t_\odot \leq 5$ day give $F_{\nu} \propto \nu^{-\beta}$ with $\beta = 1.10 \pm 0.08$ (Zharikov et al. 1998), so that $p = 2.20 \pm 0.16$. We take this value to hold throughout the range 1.3 day $\leq t_\odot \leq 95$ day, thus assuming that $\nu_{\odot,\text{cool}}$ does not change as the afterglow evolves. We subtract the host galaxy flux ($R_\odot = 25.55 \pm 0.19$; Zharikov et al. 1998) from all data points before fitting.

We fixed values of R_\odot and p, and then executed a grid search on the break time $t_{\odot,b}$ and normalization of the model light curve. Results are summarized in Table 2 and Fig. 1. The final χ^2 per degree of freedom is ~ 4.

These large χ^2 values make meaningful error estimates on parameters difficult. Let us suppose χ^2 is large because details omitted from the models (clumps in the ambient medium or blast wave instabilities) affect the light curve, and so attach an uncertainty of 0.1 mag to each predicted flux. Adding this in quadrature to observational uncertainties when computing χ^2, we obtain χ^2/d.o.f. ~ 1. Error estimates based on changes in χ^2 then rule out log($t_{\odot,b}$/day) < 3.5 at about the 90% confidence level even for our “maximum beaming” case ($p = 2.04$, $R_\odot = 25.36$).

To convert a supposed break time $t_{\odot,b}$ into a beaming angle ζ_{\odot}, we need estimates of the burst energy per steradian and the ambient density. Wijers & Galama (1998) infer $E_0/\Omega = 3.7 \times 10^{52} \text{erg}/(4\pi \text{Sr})$ and $\rho = 5.8 \times 10^{-26} \text{g}/\text{cm}^3$. Combining these values with $t_{\odot,b} \gtrsim 10^3$ day gives $\zeta_{\odot} \gtrsim 0.5 \text{rad} \approx 30 \text{deg}$. E_0/Ω and ρ are substantially uncertain, but because $\zeta_{\odot} \propto (\rho/E_0)^{1/8}$, the error budget for ζ_{\odot} is dominated by uncertainties in p rather than in E_0 or ρ.

This beaming limit implies $\Omega < 0.75 \text{Sr}$, which is 6% of the sky. GRB 970508 was at $z = 0.835$ (Metzger et al. 1997). We then find gamma ray energy $E_\gamma = 2.8 \times 10^{50} \text{erg} \times (\Omega/0.75 \text{Sr})(d_L/4.82 \text{Gpc})^2 (1.835/[1 + z])$. If the afterglow is primarily powered by different ejecta from the initial GRB, as when a “slow” wind ($\Gamma_0 \sim 10$) dominates the ejecta energy, then our beaming limit applies only to the afterglow emission. The optical fluence implies $E_{\text{opt}} = 3.4 \times 10^{49} \text{erg} \times (\Omega/0.75 \text{Sr})(d_L/4.82 \text{Gpc})^2 (1.835/[1 + z])$. The irreducible minimum energy is thus $3.4 \times 10^{49} \text{erg}$, using the smallest possible redshift and beaming angle. We have reduced the beaming uncertainty, from the factor $\sim \Gamma_0^2 \approx 300^2 \sim 10^5$ allowed by γ-ray observations alone to a factor $(4\pi \text{Sr})/(0.75 \text{Sr}) \sim 20$, and thus obtain the most rigorous lower limit on GRB energy requirements yet.

Acknowledgements. I thank Re'em Sari for useful comments, and KNPO for financial support.

References

Metzger M.R., et al., 1997, Nat 387, 879