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Abstract. We present a tool adapted to the detection of
faint mid-infrared sources within ISOCAM mosaics. This
tool is based on a wavelet analysis which allows us to dis-
criminate sources from cosmic ray impacts at the very
limit of the instrument, four orders of magnitudes be-
low IRAS. It is called PRETI for Pattern REcognition
Technique for ISOCAM data, because glitches with tran-
sient behaviors are isolated in the wavelet space, i.e. fre-
quency space, where they present peculiar signatures in
the form of patterns automatically identified and then
reconstructed. We have tested PRETI with Monte-Carlo
simulations of fake ISOCAM data. These simulations al-
lowed us to define the fraction of remaining false sources
due to cosmic rays, the sensitivity and completeness limits
as well as the photometric accuracy as a function of the
observation parameters.

Although the main scientific applications of this tech-
nique have appeared or will appear in separated papers,
we present here an application to the ISOCAM-Hubble
Deep Field image. This work completes and confirms the
results already published (Aussel et al. 1999).

Key words: methods: data analysis — infrared:
galaxies — cosmology: observations — methods:
image processing

1. Introduction

Following the detection of ultra-luminous infrared galax-
ies (ULIRG’s) by the IRAS satellite (Houck et al. 1984;
Houck et al. 1985; Soifer et al. 1984a; Soifer et al. 1984b),
it is not clear whether such objects, which are very bright
but not numerous in the nearby universe, could be rep-
resentative of a more common phase in the evolution of
normal galaxies. In other words, could we expect the lack
of detection of primeval galaxies to be due to dust extinc-
tion in systems emitting more than 90% of their light in
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the infrared, as in local ULIRG’s Djorgovski & Thompson
1992).

Several programs were devoted to this search using
ISOCAM (Cesarsky et al. 1996), one of the four instru-
ments on board of the ISO (Infrared Space Observatory)
spacecraft (Kessler et al. 1996) which ended its life in
May, 1998. The present paper is devoted to reduction
of data obtained with the long wavelength (LW) detec-
tor of ISOCAM, a (32 × 32) pixel array of SiGa. The
LW detector operates in the range 4 to 18 µm, with a
sensitivity four orders of magnitude better than IRAS
and a spatial resolution sixty times better. This chan-
nel of ISOCAM was suited for the search of MIR dust
emission in galaxies of redshifts typically below z = 1.5
(Elbaz et al. 1998). In this wavelength range, we find UIBs
(Unidentified Infrared Bands) from 6.2 to 12.7 µm and
Very Small Grains above 10 µm (Vigroux et al. 1998).
However, because the 32 × 32 pixels of the LW detector
were both thick and cold, they were very sensitive to the
presence of cosmic rays, and slow to react to changes in
fluxes. Therefore, for faint source detection with ISOCAM,
it is necessary to discriminate non-Gaussian fluctuations
of the signal from Gaussian ones, and to separate cos-
mic rays, i.e. glitches, from real sources. The method we
developed for this purpose relies on the fact that these
signal components, when measured by a given pixel, show
different signatures in their temporal evolution, and can
be identified using a multiscale transform, which separates
the various frequencies in the signal. Once the “bad” com-
ponents (i.e. glitches) are identified, they can be extracted
from the temporal signal. The glitch-free signal can then
used to build the final image.

The detection of faint sources is then performed on
this final image using again a wavelet transform of the
signal, but this time spatially instead of temporally. We
called this tool PRETI (Pattern REcognition Technique
for Isocam data) because we use a temporal signature to
recognize each signal component, which appears as a pat-
tern in wavelet space.
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In the first part of the paper, we describe the PRETI
procedure. Then, we focus on the validation of this tech-
nique using Monte-Carlo simulations. These simulations
were performed on a data set void of real sources in which
we introduced simulated sources with random fluxes and
positions, in order to estimate the following characteristics
of an observation:

1. the sensitivity limit: the flux of the faintest detected
source.

2. the photometric accuracy.
3. the completeness limit: the faintest flux for which all

sources are detected or at least an established and im-
portant fraction of the total number of sources.

4. the false detection rate: the number of false sources
due to glitches wrongly interpreted as sources, as a
function of source strength.

A first set of simulations was already used in Aussel et al.
(1999), based on this technique, but the used data set was
not void of real sources, so that the fourth point above
could not be addressed.

2. A brief discussion of the problem

The usual steps to analyze array data to construct a cali-
brated image are:

1. calibrating the data:
(a) extraction of the cosmic ray glitches by comparing

successive readouts,
(b) subtraction of the signal due to dark currents,
(c) flat-fielding, by dividing the data by a flat-field ex-

tracted from the library,
(d) converting camera units into physical fluxes (Jy),

2. using a standard source detection algorithm, which al-
lows us to estimate the background and the noise level,
and fitting the Point Spread Function (PSF) to pixels
showing a flux level higher than n times the noise stan-
dard deviation (rms).

As all ISOCAM surveys have been done using raster ob-
servations, we will not consider in this paper staring and
CVF ISOCAM data (see Starck et al. 1999, for a general
review of ISOCAM data calibration).

The simple calibration described above is successful
when applied to bright objects (down to a few percent of
the background level) but is inefficient when applied to
faint source detection (below 1% of the background) with
ISOCAM. At first order, this can be improved by model-
ing the flat-field, instead of using a library flat-field. The
position of the lens of ISOCAM varies slightly between
settings, and the optical flat-field varies as a function of
the lens position by 2 to 20% from the center to the bor-
der of the array. In the case of empty fields (and more
generally when most of the map covers an empty field), a
simple median of the cube of data gives a very good flat-
field, which allows us to reach a detection level of a few
percent of the background level (Starck et al. 1999).

However, at second order, one encounters the main dif-
ficulty in dealing with ISOCAM faint source detection: the
combination of the cosmic ray impacts (glitches) and the
transient behavior of the detectors. For glitches producing
single fast increases and decreases of the signal, a simple
median filtering produces a fairly good deglitching. The
ISOCAM glitch rate is one per second, and each glitch on
average has an impact on eight pixels (Claret et al. 1999).
However, 5 to 20% of the total number of readouts, de-
pending on the integration time and the strength of the
selection criterion, are affected by memory effects, which
can produce false detections. Consequently, the main lim-
itation here is not the detection limit of the instrument,
which is quite low, but the false detections, whose number
increases with the sensitivity.
Three types of glitches can be isolated, those creating:

1. a positive strong and short feature (lasting one readout
only),

2. a positive tail (fader, lasting a few readouts),
3. a negative tail (dipper, lasting a several tens of read-

outs).

Figure 1 is a plot in camera units (ADU, for Analog to
Digital Units) measured by a single pixel as a function of
the number of readouts, i.e. time, which shows these three
types of glitches: (a) three sharp “1” type, (b) a “fader”
at readout 80 and lasting 20 readouts, (c) a “dipper” at
readout 230 lasting 150 readouts.

The two first pixels are taken from a four by four raster
observation of the Lockman hole, with a pixel field of view
of 6 arc second, an individual integration time of 2.1 sec-
ond, the LW3 filters (15 µm), a gain of 2, and 56 readouts
for the first raster position and 27 readout for the others
(observation number:03000102).

The last pixel is from another observation, with the
same parameters except for the number of readouts per
raster position, which is equal to 22 instead of 27 (obser-
vation number:02600404).

Finally, the signal measured by a single pixel as a func-
tion of time is the combination of memory effects, cosmic
ray impacts and real sources: memory effects begin with
the first readouts, since the detector faces a flux variation
from an offset position to the target position (stabiliza-
tion), then appear with long-lasting glitches and following
the detection of real sources. Clearly one needs to sepa-
rate all these components of the signal in each pixel before
building a final raster map, and to keep the information
of the associated noise before applying a source detection
algorithm.

In Sect. 3, we will show that the concept of pattern
recognition using a multi-resolution algorithm leads to an
efficient calibration procedure, free of the major problems
described above. Simulations and real data analysis will
be presented in a Sect. 4.
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Fig. 1. These three plots show a single detector response in
Analog to Digital Units (ADU) as a function of time, expressed
here in number of readouts, where each readout corresponds to
2 s. Three types glitches due to cosmic rays can be found here:
a) top: the most common glitches, lasting only one readout.
b) middle: a “fader”, occuring around readout 160. This glitch
presents a slowly decreasing tail. It has been truncated above
100 ADUs, but its original intensity is 2558 ADUs. c) bottom:
a “dipper”, beginning around readout 240. This glitch is fol-
lowed by a memory effect lasting about 100 readouts. In these
observations, the camera draws a mosaic on the sky (raster).
Hence as long as an object, such as a star or a galaxy, is in the
line of sight of a given pixel, the measured signal increases. A
faint galaxy is visible on the bottom plot c) around readout
120, lasting only one position in the raster. Dashed lines mark
different observation positions

3. “Pattern recognition”: A multi-scale approach

3.1. The “temporal detection technique” and its
limitations

In Fig. 1c, at readout 120, a bump can be seen lasting
one whole exposure time (30 readouts). This is the signal
expected when the camera pointing is such that a source
falls on the examined pixel. Thus we see that temporal
detection of sources is a possible and useful alternative to
the usual spatial detection. This temporal behavior of the
observed flux by a pixel has the advantage of being dark
and flat independent. Indeed, the flat and dark act as a
multiplicative and an additive constant on the temporal
signal, which does not affect the shape of the signal.

The redundancy inside the raster can be used for ro-
bust detection. For example, for a raster observation with
successive array displacements corresponding to one half
of the array on the sky, a source should be detected tem-
porally four times (see Fig. 2). A criterion for a robust
detection can be obtained by considering the number of
times a source is detected. In the case of Fig. 2, the source
can easily be detected by eye in the second and third plots
while in the other two, the signal is too noisy.

We tested an automatic “temporal detection tech-
nique” which is described in Appendix A. Although its
results are relatively robust, the technique still suffers from
severe limitations:

1. low signal to noise ratio (SNR): in a mosaic, a source
generally extends over several pixels. Co-adding them
allows us to increase the SNR. This is not possible in
this technique.

2. poor photometry: because of the previous point and
also due to the difficulty of estimating the background
level.

3. sources are split: the signal of weak sources extended
over several pixels (either because they are intrinsically
extended or because of the Point Spread Function,
PSF, or because of the camera distortion) is split, re-
sulting again in a decrease of the SNR of the source.

4. false detections: false detections are possible for a re-
dundancy of 10 or more, when searching for extremely
faint objects, due to the large number of cosmic ray
impacts.

In order to avoid these difficulties, it is necessary to iden-
tify the glitches with memory effects (faders and dippers),
and extract them from the data, if possible without loos-
ing the associated information. Co-addition then becomes
possible and a standard spatial source detection algorithm
can be used, keeping in mind that noise is not homo-
geneously distributed on the map. This is exactly what
PRETI allows us to do. New methods based on wavelet
transforms have recently been developed for source extrac-
tion in an image (Bijaoui & Rué 1995), and successfully
adapted for spectral analysis (Starck et al. 1997). Using
such an approach, a temporal signal can be decomposed
in its different components, selected from their frequency.

In terms of noise, in the temporal technique the noise
standard deviation is divided by

√
Nr (where Nr is the

number of readouts per raster position), while it is divided
by
√
Nr ∗

√
Nd (where Nd is the number of redundancies

inside the raster, i.e. the number of pixels which see the
same sky position) for co-added data.

3.2. The Multi-Scale Vision Model

In the Multi-Scale Vision Model (Bijaoui & Rué 1995),
an object in a signal is defined as a set of structures de-
tected in the wavelet space. The wavelet transform algo-
rithm used for such a decomposition is the so-called “à
trous” algorithm, which allows us to represent a signal
D(t) by a simple sum of its wavelet coefficients wj and
a smoothed version of the signal cp (see Appendix B for
more details about the “à trous” algorithm)

D(t) = cp(t) +

p∑
j=1

wj(t). (1)

The algorithm produces p + 1 arrays of the same size,
each one containing only information at a given frequency
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Fig. 2. Four pixel histories (top left pixel (4,12), top right pixel (12,12), bottom left pixel (20,12), and bottom right pixel (27,12)).
The signal in ADU is plotted versus the readout number. The dotted lines indicate the change of camera pointing (i.e. between
two dotted lines, the observed flux is the same). The same source is seen by the four pixels respectively at position 2,3,4,5. It
can be relatively easily detected in pixel (12,12) and (20,12), while it is more difficult to see it in pixels (4,12) and (27,12)

band. In such signals, we define a “structure” as a group
of connected significant (above a given threshold) wavelet
coefficients. A complete description of how to estimate the
significance of a wavelet coefficient, which depends on the
nature of the noise, can be found in Starck et al. (1998).
An object is described as a hierarchical set of structures.
Two structures in a single object can be connected by
“interscale-relation”. Consider two structures at two suc-
cessive scales, S1

j and S2
j+1. Each structure is located on

one of the individual arrays of the decomposition and cor-
responds to a region where the signal is significant. S1

j is

said to be connected to S2
j+1 if S2

j+1 contains the pixel

position of the maximum wavelet coefficient value of S1
j

(i.e. the maximum position of the structure S1
j must also

be contained in the structure S2
j+1). A set of connected

structures is called an object in the interscale connectiv-
ity graph.

Once an object is detected in wavelet space, it can
be isolated by searching for the simplest function which
presents the same signal in wavelet space. The problem
of reconstruction (Bijaoui & Rué 1995) consists then in
searching for a signal V such that its wavelet coefficients
are the same as those of the detected structure. By noting
T , the wavelet transform operator, and Pb, the projec-
tion operator in the subspace of the detected coefficients
(i.e. Pb set all coefficients at scales and positions where
nothing was detected to zero), the solution can be found
by minimizing the following expression:

J(V ) =‖W − (Pb ◦ T )V ‖ (2)
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Fig. 3. The Multiscale Vision Model: contiguous significant
wavelet coefficients form a structure, and following an inter-
scale relation, a set of structures form an object. Two struc-
tures Sj, Sj+1 at two successive scales belong to the same
object if the position pixel of the maximum wavelet coefficient
value of Sj is included in Sj+1

where W represents the detected wavelet coefficients of
the signal. A complete description of algorithms for min-
imization of such a functional can be found in (Bijaoui
& Rué 1995). In two dimensions, the method is identical.
Figure 3 shows how several structures in different scales
are linked together and form objects.

In ISOCAM data it is the cosmic ray glitches with
memory effects which are the typical objects to be ex-
tracted from the time sequence of the signal. Indeed, the
signal associated with a fader or a dipper type glitch is
significant at several frequencies: a strong and rapid peak
makes them significant in the highest frequency wavelet
coefficient decomposition of the initial signal while the
memory effect makes them significant in the lower fre-
quency wavelet coefficients. Hence, the multi-scale ap-
proach is an ideal tool to discriminate glitches from real
signal. We will call pattern recognition, the action of
searching for objects showing properties typical of those
expected for faders and dippers.

3.3. Pattern REcognition Technique for Isocam

The idea developed here is to use the multi-scale vision
modeling for a decomposition of a signal into its main
components. In practice, a simple object reconstruction
from the detected structure in the wavelet space, as pro-
posed in Bijaoui & Rué (1995), would produce poor results
because of the strong confusion between the numerous ob-
jects that can be found in the data. Moreover, wavelet

transforms present a drawback: the wings of the wavelet
function are negative (so that the integral of the function is
zero) which implies that when a positive signal falls onto
one wing of the wavelet function it produces a negative
signal in the wavelet transform. The quality of the object
reconstruction is good only when additional constraints
are introduced, such as positivity constraint for positive
objects, and negativity constraint for negative objects. An
object is defined as positive (or negative) when the wavelet
coefficient of the object, which has the maximum absolute
value, is positive (or negative).

The problem of confusion between numerous objects
can be solved when including a selection criterion in the
detection of these objects. Using the knowledge we have
about the objects, in this case, glitches, the problem of
unknown object reconstruction is reduced to a pattern
recognition problem, where the pattern is the glitch itself.
We only search for objects which satisfy a given set of
conditions in the Multi-Scale Vision Model (MVM). For
example, finding glitches of the first type is equivalent
to finding objects which are positive, strong, and with a
duration shorter than those of the sources. The method
that we use for the decomposition of the signal of a given
ISOCAM pixel, D(t0... tn), is summarized below:

1. detection of the glitches of the first type (i.e. few read-
out glitches) in wavelet space: the corresponding sig-
nal, C1(t0... tn), is then subtracted from the initial
data, D: D1 = D − C1. This is the first deglitching
step.

2. detection of the negative components due to dippers:
the multi-scale vision model is applied to D1, hence
negative objects are detected and the reconstructed
signal, C2(t0... tn), is subtracted to the output of the
previous step: D2 = D1 − C2. This is the second
deglitching step where throughs following glitches are
corrected.

3. detection of the positive components due to faders and
dippers: this step must be done carefully, since sources
also produce positive components in the signal. Only
positive objects lasting much longer or much less than
the time spent on a given position on the sky are au-
tomatically considered as glitches. The output signal,
C3(t0... tn), is then subtracted again from the previous
signal: D3 = D2 − C3.

4. detection of a very strong positive signal on scales
where sources are expected. This step is done in prepa-
ration for the baseline subtraction; the final source de-
tection is not done at this stage. The multiscale vision
model is applied toD3 and strong positive objects with
a correct temporal size are reconstructed: we obtain
C4(t0... tn), and we calculate D4 = D3 − C4.

5. baseline subtraction: the signal D4 contains only noise
and temporally undetectable faint sources. The base-
line is easily obtained by convolving D4 by a low fre-
quency pass band filter. We obtain C5(t0... tn).
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Fig. 4. These two plots show the signal of a single pixel as a
function of time before calibration (top, flux in ADU) and af-
ter calibration (bottom, flux in ADU/gain/second). The trough
following the second glitch (dipper) has disappeared and the
remaining signal contains only Gaussian noise (photon noise
+ readout noise) plus sources (one relatively bright source is
located at readout 120, fainter sources will only appear after
co-addition of all pixels having seen the same sky position in
the final map)

6. The residual noise is obtained by C6 = D4 − C5; its
mean value is zero.

Finally, the set (C1, C2, C3, C4, C5, C6), represents the de-
composition of the signal into its main components. Note
also that the input signal D is equal to the sum of all
components:

D =
6∑
i=1

Ci. (3)

A deglitched signal is obtained by:

Dg = D − C1 − C2 − C3. (4)

For faint source detection, we use the signal Db = C4+C6,
which is background, dark, and glitch free. The back-
ground has been subtracted, and glitches with their long
duration effects have been suppressed. Applying the pat-
tern recognition method to all detector pixels, we obtain a
cubeDb(x, y, t). All other component are kept in the cubes
Ci. The baseline suppression presents several advantages:
first, the final raster map is dark-corrected without the
need of a library dark, since we end up with a mean zero
level for each pixel. This is particularly important when
the library dark is not good enough, and induces visual
artifacts (Starck et al. 1999). Second, the flat-field accu-
racy only affects the photometry of the sources but not
the background level, which is extracted in the baseline.
Thus, its influence in the final calibration is decreased.

3.4. Example

Figure 4 (bottom) presents the result obtained with this
method. The decomposition of the original signal (Fig. 4

top) into its main components is shown in Fig. 5: (a),
(b), and (d) are features subtracted from the original
signal (short glitches, dipper, and baseline, respectively),
which present no direct interest for faint source detection,
and only (c) and (e) (bright sources and noise plus faint
sources, respectively) are kept for building the final image.
The noise must also be kept because faint sources are often
detectable only after co-addition of the data. The simple
sum of the five components is exactly equal to the original
data (see Fig. 4 top). The calibrated background free data
(see Fig. 4 bottom) are then obtained by addition of (c)
and (e).

3.5. Transient correction

Three kinds of transients must be distinguished:

1. a long term transient at the beginning of the obser-
vation. It can be either a downward or an upward
transient depending on the flux level of the previ-
ous observation. If the difference between the present
background level (which dominates the signal in faint
source observations) and the previous background level
is high, then the transient can affect several hundred
frames. Long term transients have no effect on source
detection when using the multi-resolution approach,
because they are eliminated with the baseline.

2. an upward transient each time a pixel points in the
direction of a source. There is presently no physical
model which describes the ISOCAM upward transient.
This type of transient affects mainly the photometry.
Objects with a flux at the theoretical detection limit
are not detected because the signal measured is only a
fraction (typically 60%) of the signal after stabilization
(Starck et al. 1999).

3. a downward transient after each source, which can pro-
duce ghosts when following bright sources, since the
downward transient may remain above the noise level
even after the change of camera pointing.

For an automatic source detection method, the last type
of transient must be corrected for. Physical models exist
for downward transients and several methods may be used
(Starck et al. 1999). In our case, a very trivial approach
can also be used, which consists of treating the recon-
structed temporal objects. Indeed, we can assume that the
part of the object which appears after the displacement of
the array is the transient, and it can be eliminated by a
simple thresholding.

Figure 6 bottom shows the result after such a treat-
ment. A signal containing a source (top) shows a strong
downward transient, which is very clear after deglitch-
ing and baseline subtraction (middle). The three succes-
sive positions on the array are affected by the transient,
which induces ghosts in the final image if they are not
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Fig. 5. Decomposition of the signal into its main components: a) short glitch, b) trough of a dipper, c) bright source, d) baseline,
e) noise plus faint sources. The simple sum of the fives components is exactly equal to the original data (see Fig. 2). The
calibrated background free data are obtained by addition of signals c) and e). Figure c) shows the reconstruction of a source
approximated as a Gaussian, but sources are kept in the signal and their shape differ from one source to the other

Fig. 6. Examples of transient corrections. Top: signal con-
taining a strong source. Middle: signal after deglitching and
subtraction of the baseline. The dashed line shows the configu-
ration limits and crosses indicate the readouts which have been
masked. Bottom: signal after the transient correction

removed. The correct shape of the source (bottom) is ob-
tained through the technique developed by Abergel et al.
(1996).

3.6. The Multiscale Median Transform

The presented method produces good results but requires
a long computation time. A similar but faster method,
producing results of equivalent quality and avoiding
the delicate problem of the negative wings of wavelet
functions, is to use the Multi-Resolution Median
Transform (MMT) (Starck et al. 1998) instead of the
wavelet transform. No confusion between positive and
negative objects is possible because this multi-resolution
transform does not present the ringing drawback. The
MMT has been proposed for data compression (Starck
et al. 1996), and it has also recently been used for
ISOCAM short glitch suppression (Starck et al. 1999).

The MMT algorithm is relatively simple. Let
med(S, n) be the median transform of a one-dimensional
signal S within a window of dimension n. If we define, for
Ns resolution scales, the coefficients:

ci =

{
S if i = 1
med(S, 2i−1 + 1) if i = 2, Ns

(5)

wi = ci−1 − ci for i = 2, Ns (6)

we can expand the original signal similarly to the “à trous
algorithm”:

S = cp +
∑
i=2,Ns

wi, (7)

where cp is the residual signal.
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Applying the multi-scale vision model (MVM) with
the MMT, the object reconstruction is straightforward,
because no iteration is needed to get a good quality re-
construction.

Figure 7 shows the comparison between the “à trous”
wavelet transform (on the left) and the MMT (on the
right) of the input signal in Fig. 1c. In these diagrams,
the scale is represented as a function of the time. We can
see that with the MMT, it is easier to distinguish sources
from glitches. Figure 8 shows the result of MVM using
the MMT instead of the “à trous” algorithm. From (a)
to (e), we see the reconstructed source, the dipper, the
baseline, the sum of the glitches and the baseline (i.e. non-
interesting data), and the original signal from which the
signal (d) has been subtracted.

3.7. Conclusion

Once the calibration is done, the raster map can nor-
mally be created, with flat field correction, and all data
co-added. The associated rms map can now be used for the
detection, which was impossible before due to the strong
effect of residual glitches. Since the background has been
removed, simple source detection can be done just by com-
paring the flux in the raster map to the rms map.

4. Source detection

Once all data have been calibrated, the final raster map
R(x, y) and its associated rms map Rσ(x, y) can be cre-
ated. If several rasters of the same field are available,
they can be co-added in order to improve the signal to
noise ratio. The noise in R(x, y) (i.e. Rσ(x, y)) is non-
homogeneously distributed over the map, first because
some pixels have been masked (short glitches) and second
because some areas of the field (particularly the border
of the mosaic) present low redundancy (few readouts per
sky position). For this reason the noise around the border
of the image can be relatively high with respect to the
noise toward the image center. Therefore, if we made the
simple hypothesis of uniform noise (for instance Gaussian
noise of standard deviation σ), it would lead to a large
amount of false detections on the border. The correct
solution is to use the Rσ(x, y) map. In order to detect
faint sources on the final image, we can use the multi-
scale vision model (MVM) in two-dimensions. This time
we use the “à trous” algorithm because the linearity of the
wavelet transform allows us to derive a robust modelling
of the noise in wavelet space (using the rms mapRσ(x, y)),
which is impossible using the MMT. Moreover, in this case
the artefacts around sources are negligible since we have
no strong sources.

For each wavelet coefficient wj(x, y) of R, the exact
standard deviation σj(x, y) has to be calculated from the
root mean square map Rσ(x, y).

A wavelet coefficient wj(x, y) is obtained by the corre-
lation product between the image R and a function gj :

wj(x, y) =
∑
k

∑
l

R(x, y)gj(x+ k, y + l) (8)

then we have:

σ2
j (x, y) =

∑
k

∑
l

R2
σ(x, y)g2

j (x+ k, y + l). (9)

In the case of the “à trous” algorithm, the coefficients
gj(x, y) are not known exactly, but they can be computed
by taking the wavelet transform of a Dirac (wδ, in our
notation):

gj(x, y) = wδj (x, y). (10)

Then the map σ2
j is calculated by correlating the square of

the wavelet scale j of wδ by R2
σ(x, y). A wavelet coefficient

is significant if:

| wj(x, y) |> Nσσj(x, y). (11)

Nσ is a parameter fixing the confidence level (generally
taken equal to 3). Once this step is performed, the ob-
ject selection and their reconstructions can be done as
described in Bijaoui & Rué (1995). One can therefore pro-
duce a map containing only the reconstructed objects, i.e.
the sources (galaxies, stars) that we were looking for. This
image can be used for comparison at other wavelengths.

Finally, the outputs of PRETI are numerous and con-
tain all information at all scales divided into several cubes
of data and images in FITS format, but the most com-
monly used outputs are the following:

1. the final image and its associated rms image.
2. the image of the reconstructed objects
3. the list of objects with their position, flux and flux er-

ror (assuming no transient error), the sigma level of
the detection and the scale at which the object was
detected (size of the object).

The confidence level associated with the faint sources de-
tected with PRETI cannot be directly understood as a
usual signal-to-noise ratio typical of a Gaussian noise. In
fact, because of the presence of residual glitches, the de-
tection level is not fixed by the overall rms but by the
level at which false detections begin to appear. One can
check the robustness of the source detection by using a
high detection level and comparing the source list with
the brightest sources of the corresponding optical image.
However, to tackle adequately the faint source detection,
the only solution is to tune the method with simulations.

A field where this faint source detection method is
widely applied is the study of source number counts in
galaxy surveys, as for example the ISOCAM survey in the
Hubble Deep Field region (Aussel et al. 1999). We will
explain in the next section how simulations allows us to
determine the accuracy of the so called logN − logS dia-
grams, which show the number N of sources as a function
of the emitted flux S.
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Fig. 7. Comparison between the “à trous” wavelet transform (left) and the multresolution median transform (right) of the signal
of Fig. 1c. Resolution scale is represented versus the time. We note that the separation between the source and the glitch is
improved using the MMT

Fig. 8. Decomposition of the signal into its main components using the MMT: a) source, b) dipper, c) baseline, d) Sum of the
glitches and the baseline (i.e. non interesting data), and e) original signal minus d)

5. Simulations

Simulations are essential to tune the method in order to
detect the faintest sources without excessive false detec-
tions. They allow one to compute the following quantities:

1. sensitivity limit: the flux of the faintest source
detected;

2. photometric accuracy: the response of the detectors is
generally not stabilized when pointing towards faint

sources because i stabilization is very slow. Hence the
uncertainty on the photometry depends on the quality
of the algorithm for transient correction (Abergel et al.
1996).

3. completeness limit: the faintest flux for which all
sources or at least a known fraction of sources are
detected.
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Fig. 9. Simulation of the ISO-HDF mosaic (I): (left) this image contains only simulated photon noise plus readout noise, i.e.
Gaussian noise, (right) image of the ISO-HDF mosaic without any noise and with simulated sources according to a distribution
without evolution (Franceschini 1997). Sources ranges from 0.1 µJy to 1 mJy

Fig. 10. Simulation of the ISO-HDF mosaic (II): (left) sum of the two previous images, i.e. simulated sources plus readout and
photon noise, (right) image of the ISO-HDF mosaic simulated from a staring observation, i.e. all sources of noise are present
but no source at all is present (this image can be used to estimate the number of false detections due to glitches, since it does
not contain any real sources)
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4. rate of false detections: the number of false detections
due to glitches mimicking sources.

We describe below the details of the simulations.

5.1. Noise and cosmic rays simulation

If there are no sources, the temporal signal of the pixel
contains only instrumental noise and cosmic ray effects.
Due to the lack of accuracy of our interpretations of the
physical effects of cosmic rays on the detector, we are com-
pelled to use real ISOCAM data. A first possibility is to
add simulated sources to the real observation: this allows
us to test and calibrate the photometry and verify the
completeness at a given flux by comparing the number
of new detections with the number of introduced simu-
lated sources. This method was applied in the study of the
ISOCAM image of the Hubble Deep Field (Aussel et al.
1999). However, this technique does not allow us to mea-
sure the false detection rate and to test the possibility
of recovering the logN − logS relation if it is sensitive
to confusion. Thus we needed a long observation void of
sources, where the only sources are the simulated sources
intentionally added to the dataset. This very long pointed
observation (“staring”) has been cut in order to create a
false “raster” observation. If a pixel detects a source, its
flux remains above the background level throughout the
observation, and this has no effect on the source detec-
tion algorithm since the low frequency signal is subtracted.
The “staring” observation has to be at least as long as the
raster to be simulated. Moreover, the rate of cosmic rays
must be compatible with that of the observation and the
individual integration time must be the same, since the
behavior of the detectors depends on it. Finally, the high
frequency photon noise level of the two observations must
be compatible. Such an observation was acquired for us
during the calibration of ISOCAM toward the end of the
ISO mission, with both the LW2 and LW3 filters.

5.2. Source simulation

The behavior of a source on a detector is a step function
i.e. the signal of a pixel increases when observing the
source and afterwards decreases down to the background
level. The presence of transients modifies this behavior.
We used the Abergel et al. (1996) inverse transient model
to simulate the sources seen by ISOCAM. To take into
account the PSF effect, i.e. the distribution of the flux
of a point source among the nearby pixels, we adopt the
(Okumura 1997) model. In this way we are able to simu-
late a source once its position on the detector is known.
An observation is therefore composed of a set of sources
whose positions follow a uniform probability density
function.

To study the completeness limit and the photomet-
ric accuracy, we generate a list of sources with uniform

flux. Several lists must be generated to ensure that pe-
culiar source positions (e.g. a pixel affected by numerous
glitches) do not affect the result. Fake observation data
are then created for several flux levels.

To test the validity of the number counts (logN−logS
or dN/dS) obtained from one observation, we can analyze
simulated observations which contain random lists of fake
sources whose fluxes follow the theoretical logN − logS.
In Sect. 6, we apply this method to the case of the Hubble
Deep Field, North.

5.3. Specificity of a simulation

Ideally, to reach the ultimate limit of the instrument,
a new set of simulations should be produced and ana-
lyzed for each observation, since the results depend on
the parameters of the observations as well as on the back-
ground level and glitch rate. However, typical cases can
be analyzed and used as templates for other observations.
We have performed detailed simulations (one hundred
simulations per observation) for two template cases: the
“ISO-HDF”, which corresponds to what we call ultra-deep
observations with a very large redundancy (see below),
and the “Deep Survey” (Elbaz et al. 1998), for shallower
observation with less redundancy and spatial resolution.

6. The case of the Hubble Deep Field North

The Hubble Deep Field North was observed by ISO on
July 1996 (Serjeant et al. 1997) and it was analyzed by sev-
eral independent groups (Goldschmidt et al. 1997; Désert
et al. 1999; Aussel et al. 1999).

This work completes a previous paper on the ISO-
HDF North (Aussel et al. 1999) with new simulations on
an ideal dataset at 15 µm (filter LW3, 12 − 18 µm, see
Figs. 9, 10, 11). In order to check if the conditions were
similar for both observations (the staring observation and
the real mosaic on the HDF field), we first performed an
analysis of the staring observation in order to determine
the percentage of readouts affected by glitches of type 2
and 3 (faders and dippers). In the case of the ISO-HDF
(see Table 1), the percentage of data affected because of
faders and dippers is about 20%, close to the fraction of
pixels lost because of glitches of type 1. In the case of
Deep Survey-like observations, for comparison where, the
redundancy per sky position is much lower (about 3 to 6,
instead of 64), one cannot set such strong criteria for the
correction of glitches with memory effects and the typical
fraction of corrected pixels is of the order of 5% (the frac-
tion of lost pixels, however remains identical). Finally, we
also checked that the Gaussian plus readout noise mean is
comparable in both observations, which is indeed the case
when considering the same integration time as shown in
Table 1.
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Fig. 11. ISO-HDF mosaic: (left) full simulated ISO-HDF image using the staring observation plus simulated sources following
a distribution without evolution (Franceschini 1997), i.e. sum of Fig. 8 (right) plus Fig. 7 (right), (right) real image of the
ISO-HDF. We find more sources in the real image than in the simulated image, indicating strong evolution

Table 1. Comparison of the noise level and rate of cosmic ray
glitches during the ISO-HDF observation and during a staring
observation used for building a simulation of the same ISO-
HDF mosaic in the LW3 band (12− 18 µm)

Observation ISO-HDF Simulation

Noise level (ADU/G/s) 0.229 0.232
Masked pixels 19.4% 19.1%

Corrected pixels: 19.3% 18.9%
Faders 5.2% 5.5%

Dippers 14.1% 13.4%

In order to quantify the effect of incompleteness plus
photometric uncertainty on the number counts, we built
several ISO-HDF simulated images including simulated
sources whose flux distribution followed that proposed in
Franceschini et al. (1997). We stress here that this does not
influence the output number counts, but on the contrary
allows us to check if after applying PRETI, the slope of the
number counts was close to the one used in the input. The
main uncertainty here comes from the accuracy reached
in the photometry of the sources, which redistributes the
sources in each flux bin.

We use a lower limit of Sl = 0.1 µJy, which is much
lower than the sensitivity of our observations, and an up-
per limit Su = 1 mJy, for the fluxes of the fake sources.
We then simulate several fake mosaics with fluxes dis-
tributed as described above. Fluxes in Jy are converted
into ISOCAM units (ADU/gain/second) following the
standard conversion table from the ISO cookbook (ISO-
Team, 1994) (1 ADU/g/s = 1.96 mJy with LW3).

We project each source on the detector for each point-
ing of the camera by taking into account the field dis-
tortion and the point spread function (using the model
of Okumura 1997). This allows us to build a cube of im-
ages, i.e. an image of 32 × 32 pixels for each pointing of
the satellite, that we then multiply by the flat-field com-
puted from the original data without simulated sources.
Finally, we add to this cube the mean background level
of the staring observation in order to model the transient
behavior of the sources, which depends on the total flux
level of each detector, using the model of Abergel (1996).
Finally, we subtract again the mean background level to
this cube of simulated sources in order to add it to the
real dataset of the staring observation, which contains the
real background with noise and cosmic rays.

Figure 12 shows the fraction of false detections as a
function of flux limit using a detection threshold of 7τw
and 5τw, where τw is the noise level in wavelet space. For
each simulation, we have built a main and a supplemen-
tary list of sources as mentioned in the paper and found
that in both cases the rate of false detection down to the
completeness limit is only 2%.

Hence in the main list of sources extracted from the
ISO-HDF (21 sources), which was built using the 7τw
threshold, the completeness limit is 200 µJy while the sen-
sitivity limit is 50 µJy with a rate of false detection close
to 2%. But in the supplementary list (a total of 46 sources
including the previous list), which goes down to 5τw, the
completeness limit is 100 µJy with about the same rate
of false detection of 2%, which we could not measure pre-
viously. Hence, we can now merge these two source lists
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Fig. 12. Fraction of false detections as function of the flux limit
of the sample, for a detection threshold of 7 τw (lower) and
5 τw (upper)

into one single list of 46 sources, the completeness limit
of which is 100 µJy instead of 200 µJy, and contains sta-
tistically only one false source (2% of 46 sources) with a
confidence level of 95%. At fainter fluxes, the number of
false detections increases very rapidly in the supplemen-
tary list. For a limit of 20 µJy it varies between 5 and
30% according to the simulations. On a list of one hun-
dred sources this implies 10 false detections between 20
and 80 µJy.

7. Conclusion

We have developed a tool for faint sources detection
in ISOCAM data, which proved to be particularly well
adapted for the detection of sources at the few tens of
µJy level in the presence of glitches with memory effects.
We created simulated datasets in order to test the ro-
bustness of the technique and found a quantitative way
to estimate the quality of the source lists extracted from
deep surveys, while the signal-to-noise ratio alone would
be misleading. We applied this technique to a simulation
of the ISO-HDF North and found that the completeness
limit at 15 µm is 100 µJy with 2% of false detections due
to remnant glitches. New results already obtained with
PRETI will follow this paper in the near future.

Appendix A: Temporal method for faint source detection

The principle

As glitches are the main limitations for faint ISOCAM
source detection, not the noise, it is clear that an analysis

on the final raster image with a standard method (detec-
tion at kσ the noise level + background) would lead to
poor results if the glitches with transients have not been
removed. In order to avoid other problems (dark current
subtraction, flat field, transient and long drift correction,
etc.), a solution is to perform a temporal source detec-
tion technique rather than a standard source detection
technique on the final raster map. The temporal source
detection method is based on the fact that the flux ob-
served by a single detector increases when the detector
points toward a source and decreases when the camera is
moved to the subsequent phase of a raster observation.
This temporal behavior of the flux observed by a detec-
tor has the advantage of being dark current and flat field
independent. Indeed, the flat field and dark current act
as a multiplicative and an additive constant on the total
temporal signal, and do not effect the shape of the signal.
Thus, the signature of a source can be identified.

Temporal detection

Short glitches (i.e. first type) can be easily removed by
masking the position where they appear (Starck et al.
1999). For each pixel (x, y), we indicate the deglitched
data as D(x, y, c, r) and the corresponding mask as
M(x, y, c, r) (0 if the position is masked, 1 otherwise),
where c and r indicate respectively the configuration
(raster position) and the readout number in this config-
uration. Values corresponding to the same sky position
and the same configuration are averaged:

I(x, y, c) =

∑
rM(x, y, c, r)D(x, y, c, r)∑

rM(x, y, c, r)
· (12)

The temporal noise σ(x, y) is estimated for each pixel in-
dependently using a k-sigma clipping method, so the noise
on the mean value of signal in a configuration is given by:

σI(x, y, c) =
σ(x, y)√∑
rM(x, y, c, r)

. (13)

The detection is done by calculating the signal:

W (x, y, c)=I(x, y, c)−
1

2
(I(x, y, c−1)+I(x, y, c+1)) (14)

and its associated noise:
σW (x, y, c) =√

(σI(x, y, c))2+
(

1

2
σI(x, y, c−1)

)2

+
(

1

2
σI(x, y, c+1)

)2

. (15)

Then we consider we have a detection at pixel (x, y) and
at the configuration c if:
W (x, y, c) > kσW (x, y, c), (16)
where, in general, k is taken equal to 3. If a source is de-
tected at position (x, y, c) we put I(x, y, c) = 1, otherwise
I(x, y, c) = 0. We can therefore coadd the C I(x, y, c) ma-
trixes in order to obtain a matrix of detections with size
equal to that of the total image: Image(ξ, η) indicates
how many times a source has been detected at the sky
position (ξ, η) during the raster observation. For instance,
for a raster observation with half overlapping, Image(ξ, η)
can take the integer values between 0 and 4.
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Constraints for a robust detection

The detection has been made under the assumption of
Gaussian noise. Due the large number of glitches, false
detections will occur. Two parameters can be adjusted in
order to limit the number of false detections:

1. the detection level (k parameter). By default, the de-
tection is done at 3σ (it corresponds to a false detection
probability of 0.25%). Increasing the detection level
eliminates false detections (but also weaker objects).

2. the number of required redundancy Nr. For a raster
made by overlaping half the array, a source should be
detected four times (two times if it is on the border of
the raster image). Fixing a minimum of two detections
should suppress most of the false detections.

A robust detection is performed by comparing
Image(x, y) to the number Nr of required redun-
dancy. A high redundancy allows one to increase Nr and
improve the robustness of the detection. We point out
that Image(x, y) is independent of the background level,
the flat field, and the dark.

Conclusion

Once (Goldschmidt et al. 1997; Serjeant et al. 1997) the
detection is done, sources must be extracted with astro-
metric and photometric information. This is done using
the final calibrated raster image (see Siebenmorgen et al.
1996, for a complete description of each calibration step).
For observations with the six arc second lens, the PSF is
mainly contained in one single pixel. So PSF fitting does
not help, and the flux of an object can be obtained by
integrating the flux in a small box around the detected
position,using an estimate of the background. The gain
variation due to dippers and faders will have an effect on
the accuracy of the photometry, because it modifies the
background on a individual pixel. To summarize this ap-
proach, the advantages are that the detection is relatively
robust and independent of the dark current and the flat
field, while the drawbacks are:

1. the photometry is poor;
2. the temporal detection does not allow the use of cor-

relation between adjacent pixels, which is needed for
extended weak sources detection;

3. data cannot be coadded before detection.

To overcome these problems, the only way is to correct the
data from the gain variation due to faders and dippers.

Appendix B: The “À Trous” wavelet transform algorithm

In a wavelet transform, a series of transformations of an
image is generated, providing a resolution-related set of
“views” of the image. The properties satisfied by a wavelet

transform, and in particular the à trous wavelet transform
(“with holes”, so called because of the interlaced convolu-
tion used in successive levels: see step 2 of the algorithm
below) are further discussed in (Starck et al. 1998).

We consider sampled data, {c0(k)}, defined as the
scalar product at pixels k of the function f(x) with a
scaling function φ(x) which corresponds to a low pass band
filter:

c0(k) =< f(x), φ(x− k) > . (17)

The scaling function is chosen to satisfy the dilation equa-
tion:
1

2
φ
(x

2

)
=
∑
k

h(k)φ(x− k) (18)

h is a discrete low pass filter associated with the scaling
function φ. This means that a low-pass filtering of the im-
age is, by definition, closely linked to another resolution
level of the image.

The smoothed data cj(k) at a given resolution j and
at a position k is the scalar product

cj(k) =
1

2j
< f(x), φ

(
x− k

2j

)
> . (19)

This is consequently obtained by the convolution:

cj(k) =
∑
l

h(l) cj−1(k + 2j−1l). (20)

The signal difference wj between two consecutive resolu-
tions is:

wj(k) = cj−1(k)− cj(k) (21)

or:

wj(k) =
1

2j
< f(x), ψ

(
x− k

2j

)
> . (22)

Here, the wavelet function ψ is defined by:

1

2
ψ
(x

2

)
= φ(x) −

1

2
φ
(x

2

)
. (23)

For the scaling function, φ(x), the B-spline of degree 3 was
used in our calculations. We have derived a simple algo-
rithm in order to compute the associated wavelet trans-
form:

1. We initialize j to 0 and we start with the data cj(k).
2. We increment j, and we carry out a discrete convolu-

tion of the data cj−1(k) using the filter h. The distance
between the central pixel and the adjacent ones is 2j−1.

3. After this smoothing, we obtain the discrete wavelet
transform from the difference cj−1(k)− cj(k).

4. If j is less than the number p of resolutions we want
to compute, then go to step 2.

5. The set W = {w1, ..., wp, cp} represents the wavelet
transform of the data.

The most general way to handle the boundaries is to con-
sider that c(k + N) = c(N − k). But other methods can
be used such as periodicity (c(k + N) = c(k)), or conti-
nuity (c(k +N) = c(N)). Choosing one of these methods
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has little influence on our general restoration strategy. We
used continuity.

A series expansion of the original signal, c0, in terms of
the wavelet coefficients is now given as follows. The final
smoothed array cp(x) is added to all the differences wj :

c0(k) = cp(k) +

p∑
j=1

wj(k). (24)

This equation provides a reconstruction formula for the
original signal.

At each scale j, we obtain a set {wj}. This has the
same number of pixels as the input signal.

The above à trous algorithm has been discussed in
terms of a single index, x, but is easily extendable to two-
dimensional space. The use of the B3 spline leads to a
convolution with a mask of 5× 5:

1
256

1
64

3
128

1
64

1
256

1
64

1
16

3
32

1
16

1
64

3
128

3
32

9
64

3
32

3
128

1
64

1
16

3
32

1
16

1
64

1
256

1
64

3
128

1
64

1
256

 (25)

In one dimension, this mask is: ( 1
16 ,

1
4 ,

3
8 ,

1
4 ,

1
16 ).

To facilitate computation, a simplification of this
wavelet is to assume separability in the 2-dimensional
case. In the case of the B3 spline, this leads to a row by
row convolution with ( 1

16 ,
1
4 ,

3
8 ,

1
4 ,

1
16 ); followed by column

by column convolution.
As for the one dimensional case, an exact reconstruc-

tion is obtained by adding all the scales and the final
smoothed array:

c0(x, y) = cp(x, y) +

p∑
j=1

wj(x, y). (26)
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Frontières, pp. 509–519

Goldschmidt P., Oliver S.J., Serjeant S.B.G., et al., 1997,
MNRAS 289, 465

Houck J.R., Schneider D.P., Danielson G.E., et al., 1985, ApJL
290, L5

Houck J.R., Soifer B.T.G.G.N., et al., 1984, ApJL 278, L63
ISO-Team, 1994, “ISOCAM Observer Manual”,

http://isowww.estec.esa.nl/manuals/iso cam/cam om 1.html

Kessler M.F., Steinz J.A., Anderegg M.E., et al., 1996, A&A
315, L27

Okumura K., 1997, ISOCAM PSF Report, ESA/CAM IDT,
http://isowww.estec.esa.nl:80/instr/CAL/cal wksp

Serjeant S.B.G., Eaton N., Oliver S.J., et al., 1997, MNRAS
289, 457

Soifer B.T., Neugebauer G., Helou G., et al., 1984a, ApJL 283,
L1

Soifer B.T., Rowan-Robinson M., Houck J.R., et al., 1984b,
ApJL 278, L71

Starck J., Abergel A., Aussel H., et al., 1999, A&AS 134, 135
Starck J., Murtagh F., Bijaoui A., 1998, Image Processing

and Data Analysis: The Multiscale Approach. Cambridge
University Press, Cambridge (GB)

Starck J., Murtagh F., Pirenne B., Albrecht M., 1996, PASP
108, 446

Starck J., Siebenmorgen R., Gredel R., 1997, ApJ 482, 1011
Vigroux L., Charmandaris V., Gallais P., et al., 1998, in Cox

P., Kessler M. (eds.). ESA Conference: Universe as seen by
ISO, ESA Special Publications series (SP-427)


