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Abstract. Periodicity analysis of unevenly collected data
is a relevant issue in several scientific fields. In astro-
physics, for example, we have to find the fundamental pe-
riod of light or radial velocity curves which are unevenly
sampled observations of stars. Classical spectral analysis
methods are unsatisfactory to solve the problem. In this
paper we present a neural network based estimator system
which performs well the frequency extraction in unevenly
sampled signals. It uses an unsupervised Hebbian non-
linear neural algorithm to extract, from the interpolated
signal, the principal components which, in turn, are used
by the MUSIC frequency estimator algorithm to extract
the frequencies. The neural network is tolerant to noise
and works well also with few points in the sequence. We
benchmark the system on synthetic and real signals with
the Periodogram and with the Cramer-Rao lower bound.

Key words: methods: data analysis — techniques: radial
velocities — stars: binaries: eclipsing

1. Introduction

The search for periodicities in time or spatial dependent
signals is a topic of the uttermost relevance in many fields
of research, from geology (stratigraphy, seismology, etc.;
(Brescia et al. 1996)) to astronomy (Barone et al. 1994)
where it finds wide application in the study of light curves
of variable stars, AGN’s, etc.
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The more sensitive instrumentation and observational
techniques become, the more frequently we find variable
signals in time domain that previously were believed to
be constant. Research for possible periodicities in the sig-
nal curves is then a natural consequence, when not an
important issue. One of the most relevant problems con-
cerning the techniques of periodic signal analysis is the
way in which data are collected: many time series are
collected at unevenly sampling rate. We have two types
of problems related either to unknown fundamental pe-
riod of the data, or their unknown multiple periodicities.
Typical cases, for instance in Astronomy, are the deter-
mination of the fundamental period of eclipsing binaries
both of light and radial velocity curves, or the multiple pe-
riodicities determination of ligth curves of pulsating stars.
The difficulty arising from unevenly spaced data is rather
obvious and many attempts have been made to solve the
problem in a more or less satisfactory way. In this paper
we will propose a new way to approach the problem us-
ing neural networks, that seems to work satisfactory well
and seems to overcome most of the problems encountered
when dealing with unevenly sampled data.

2. Spectral analysis and unevenly spaced data
2.1. Introduction

In what follows, we assume = to be a physical variable
measured at discrete times t;. z(t;) can be written as the
sum of the signal s and random errors R: z; = z(t;) =
xs(t;) + R(t;). The problem we are dealing with is how to
estimate fundamental frequencies which may be present in
the signal x4(t;) (Deeming 1975; Kay 1988; Marple 1987).

If z is measured at uniform time steps (even sam-
pling) (Horne & Baliunas 1986; Scargle 1982) there are
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a lot of tools to effectively solve the problem which
are based on Fourier analysis (Kay 1988; Marple 1987;
Oppenheim & Schafer 1965). These methods, however,
are usually unreliable for unevenly sampled data. For in-
stance, the typical approach of resampling the data into
an evenly sampled sequence, through interpolation, intro-
duces a strong amplification of the noise which affects
the effectiveness of all Fourier based techniques which are
strongly dependent on the noise level (Horowitz 1974).

There are other techniques used in specific areas
(Ferraz-Mello 1981; Lomb 1976): however, none of them
faces directly the problem, so that they are not truly
reliable. The most used tool for periodicity analysis of
evenly or unevenly sampled signals is the Periodogram
(Lomb 1976; Scargle 1982); therefore we will refer to it to
evaluate our system.

2.2. Periodogram and its variations

The Periodogram (P), is an estimator of the signal en-
ergy in the frequency domain (Deeming 1975; Kay 1988;
Marple 1987; Oppenheim & Schafer 1965). It has been ex-
tensively applied to pulsating star light curves, unevenly
spaced, but there are difficulties in its use, specially con-
cerning with aliasing effects.

2.2.1. Scargle’s periodogram

This tool is a variation of the classical P. It was intro-
duced by J.D. Scargle (Scargle 1982) for these reasons:
1) data from instrumental sampling are often not equally
spaced; 2) due to P inconsistency (Kay 1988; Marple 1987;
Oppenheim & Schafer 1965), we must introduce a selec-
tion criterion for signal components.

In fact, in the case of even sampling, the classical
P has a simple statistic distribution: it is exponentially
distributed for Gaussian noise. In the uneven sampling
case the distribution becomes very complex. However,
Scargle’s P has the same distribution of the even case
(Scargle 1982). Its definition is:

1[N 2(n) cos 2 f (b, — 7))
P.(f) = ) ST o082 2 f (6 — 7) +
[N w(n) sin 27 f (¢, — 7)) "
SN sin? 200 f (&, — 7)
where

1 SN Vsindrft,
T = —
Arf SN L cosanft,,

and 7 is a shift variable on the time axis, f is the fre-
quency, {z (n),t,} is the observation series.
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2.2.2. Lomb’s periodogram

This tool is another variation of the classical P and is sim-
ilar to the Scargle’s P. It was introduced by Lomb (Lomb
1976) and we used the Numerical Recipes in C release
(Numerical Recipes in C 1988-1992).

Let us suppose to have N points z(n) and to compute
mean and variance:

2 1 - 2
o) —mnz::l(x(n)—x) . (2)

Therefore, the normalised Lomb’s P (power spectra as
function of an angular frequency w = 27 f > 0) is defined
as follows

PN(w) =

+
202 Zf::ol cos? w(t, —T)

L [[sz_ol (a(n) = 2)sinw(tn — 7))
202 Zf:fzol sin? w(t, —7)
where 7 is defined by the equation

252—01 sin 2wt,,

SNV cos 2wt

n=0

b l[zg—ol (x(n) — %) cosw(t, — 7))

3)

tan (2wT) =

and 7 is an offset, w is the frequency, {z (n),t,} is the
observation series. The horizontal lines in the Figs. 19, 22,
25, 27, 32 and 34 correspond to the practical significance
levels, as indicated in (Numerical Recipes in C 1988-1992).

2.8. Modern spectral analysis

Frequency estimation of narrow band signals in
Gaussian noise is a problem related to many fields
(Kay 1988; Marple 1987). Since the classical methods
of Fourier analysis suffer from statistic and resolution
problems, then newer techniques based on the analysis
of the signal autocorrelation matrix eigenvectors were
introduced (Kay 1988; Marple 1987).

2.3.1. Spectral analysis with eigenvectors

Let us assume to have a signal with p sinusoidal com-
ponents (narrow band). The p sinusoids are modelled as
a stationary ergodic signal, and this is possible only if
the phases are assumed to be indipendent random vari-
ables uniformly distributed in [0,27) (Kay 1988; Marple
1987). To estimate the frequencies we exploit the proper-
ties of the signal autocorrelation matrix (a.m.) (Kay 1988;
Marple 1987). The a.m. is the sum of the signal and the
noise matrices; the p principal eigenvectors of the signal
matrix allow the estimate of frequencies; the p principal
eigenvectors of the signal matrix are the same of the total
matrix.
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3. PCA neural nets
3.1. Introduction

Principal Component analysis (PCA) is a widely used
technique in data analysis. Mathematically, it is defined
as follows: let C = E(zxT) be the covariance matrix of
L-dimensional zero mean input data vectors . The i th
principal component of  is defined as ™ ¢(i), where c(i)
is the normalized eigenvector of C corresponding to the
i-th largest eigenvalue A(%). The subspace spanned by the
principal eigenvectors ¢(1), ...,e(M), (M < L)) is called
the PCA subspace (of dimensionality M) (Oja et al. 1991;
Oja et al. 1996). PCA’s can be neurally realized in vari-
ous ways (Baldi & Hornik 1989; Jutten & Herault 1991;
Oja 1982; Oja et al. 1991; Plumbley 1993; Sanger 1989).
The PCA neural network used by us is a one layer feedfor-
ward neural network which is able to extract the princi-
pal components of the stream of input vectors. Typically,
Hebbian type learning rules are used, based on the one
unit learning algorithm originally proposed by Oja (Oja
1982). Many different versions and extensions of this basic
algorithm have been proposed during the recent years; see
(Karhunen & Joutsensalo 1994; Karhunen & Joutsensalo
1995; Oja et al. 1996; Sanger 1989).

8.2. Linear, robust, nonlinear PCA neural nets

The structure of the PCA neural network can be
summarised as follows (Karhunen & Joutsensalo 1994;
Karhunen & Joutsensalo 1995; Oja et al. 1996; Sanger
1989): there is one input layer, and one forward layer
of neurons totally connected to the inputs; during the
learning phase there are feedback links among neurons,
that classify the network structure as either hierarchical
or symmetric. After the learning phase the network be-
comes purely feedforward. The hierarchical case leads to
the well known GHA algorithm (Karhunen & Joutsensalo
1995; Sanger 1989); in the symmetric case we have the
Oja’s subspace network (Oja 1982).

PCA neural algorithms can be derived from optimi-
sation problems, such as variance maximization and rep-
resentation error minimisation (Karhunen & Joutsensalo
1994; Karhunen & Joutsensalo 1995) so obtaining non-
linear algorithms (and relative neural networks). These
neural networks have the same architecture of the lin-
ear ones: either hierarchical or symmetric. These learn-
ing algorithms can be further classified in: robust PCA
algorithms and nonlinear PCA algorithms. We define ro-
bust a PCA algorithm when the objective function grows
less than quadratically (Karhunen & Joutsensalo 1994;
Karhunen & Joutsensalo 1995). The nonlinear learning
function appears at selected places only. In nonlinear PCA
algorithms all the outputs of the neurons are nonlinear
function of the responses.
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3.2.1. Robust PCA algorithms

In the robust generalization of variance maximisation,
the objective function f(t) is assumed to be a valid cost
function (Karhunen & Joutsensalo 1994; Karhunen &
Joutsensalo 1995), such as Incos(t) and |¢|. This leads to
the algorithm:

wi1(1) = wi(d) + peg(yr(i))er (i),
()
Ty — Zyk(j)wk(j)'

In the hierarchical case we have I(i) = i. In the symmetric
case I(i) = M, the error vector e (7) becomes the same ey,
for all the neurons, and Eq. (4) can be compactly written
as:
W1 = Wy, + perg(yy ) (5)
where y = Wiz is the instantaneous vector of neuron re-
sponses. The learning function g, derivative of f, is applied
separately to each component of the argument vector.
The robust generalisation of the representation er-
ror problem (Karhunen & Joutsensalo 1994; Karhunen &
Joutsensalo 1995), with f(t) < 2, leads to the stochastic
gradient algorithm:

wip1(6) = wi(i) + p(wi (i) gler (i) s +
+ ajwi(i)g(en(i)))

This algorithm can be again considered in both hierarchi-

cal and symmetric cases. In the symmetric case I(i) = M,

the error vector is the same (ey) for all the weights wy.

In the hierarchical case I(i) = i, Eq. (6) gives the robust

counterparts of principal eigenvectors ¢(7).

(4)

ek(i) =

(6)

3.2.2. Approximated algorithms

The first update term wy (i) Tg(ex(i))xy in Eq. (6) is pro-

portional to the same vector @ for all weights wy(7).
Furthermore, we can assume that the error vector eg
should be relatively small after the initial convergence.
Hence, we can neglet the first term in Eq. (6) and this
leads to:

w1 (1) = wi(i) + paeg yi(i)g(er(i).

(7)

3.2.3. Nonlinear PCA algorithms

Let us consider now the nonlinear extensions of PCA algo-
rithms. We can obtain them in a heuristic way by requiring
all neuron outputs to be always nonlinear in the Eq. (4)
(Karhunen & Joutsensalo 1994; Karhunen & Joutsensalo
1995). This leads to:

wiy1(i) = wi (i) + pg(yx(i))be (i), (8)
1(i)
bi.(i) = m—Zg(yk(j))wk(j) Vi=1, ...,p.
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4. Independent component analysis

Independent Component Analysis (ICA) is a useful exten-
sion of PCA that was developed in context with source or
signal separation applications (Oja et al. 1996): instead of
requiring that the coeflicients of a linear expansion of data
vectors are uncorrelated, in ICA they must be mutually in-
dependent or as independent as possible. This implies that
second order moments are not sufficient, but higher order
statistics are needed in determining ICA. This provides a
more meaningful representation of data than PCA. In cur-
rent ICA methods based on PCA neural networks, the fol-
lowing data model is usually assumed. The L-dimensional
k-th data vector xy is of the form (Oja et al. 1996):

M
xp = Asp +ny = Z Sk(i)a(i) + ng

i=1

9)

where in the M-vector s;, = [sx(1), ...,si(M)]T, sx()
denotes the i-th independent component (source signal)
at time k, A = [a(1), ...,a(M)]is a L x M mizing ma-
triz whose columns a(i) are the basis vectors of ICA, and
ny denotes noise.

The source separation problem is now to find an M x L
separating matrix B so that the M-vector y; = Bxy is
an estimate y, = 8 of the original independent source
signal (Oja et al. 1996).

4.1. Whitening

Whitening is a linear transformation A such that, given
a matrix C, we have ACAT = D where D is a diagonal
matrix with positive elements (Kay 1988; Marple 1987).

Several separation algorithms utilise the fact that if
the data vectors xj are first pre-processed by whitening
them (i.e. E(zxzl) = I with E(.) denoting the expecta-
tion), then the separating matrix B becomes orthogonal
(BB =1, sce (Oja et al. 1996)).

Approximating contrast functions which are max-
imised for a separating matrix have been introduced
because the involved probability densities are unknown
(Oja et al. 1996).

It can be shown that, for prewhitened input vectors,
the simpler contrast function given by the sum of kurtoses
is maximised by a separating matrix B (Oja et al. 1996).

However, we found that in our experiments the whiten-
ing was not as good as we expected, because the esti-
mated frequencies calculated for prewhitened signals with
the neural estimator (n.e.) were not too much accurate.

In fact we can pre-elaborate the signal, whitening it,
and then we can apply the n.e. Otherwise we can apply the
whitening and separate the signal in independent compo-
nents with the nonlinear neural algorithm of Eq. (8) and
then apply the n.e. to each of these components and esti-
mate the single frequencies separately.
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The first method gives comparable or worse results
than n.e. without whitening. The second one gives worse
results and is very expensive. When we used the whiten-
ing in our n.e. the results were worse and more time con-
suming than the ones obtained using the standard n.e.
(i.e. without whitening the signal). Experimental results
are given in the following sections. For these reasons
whitening is not a suitable technique to improve our n.e..

5. The neural network based estimator system

The process for periodicity analysis can be divided in the
following steps:
- Preprocessing
We first interpolate the data with a simple linear fitting
and then calculate and subtract the average pattern to
obtain zero mean process (Karhunen & Joutsensalo 1994;
Karhunen & Joutsensalo 1995).
- Neural computing

The fundamental learning parameters are:
1) the initial weight matrix;
2) the number of neurons, that is the number of principal
eigenvectors that we need, equal to twice the number of
signal periodicities (for real signals);
3) €, i.e. the threshold parameter for convergence;
4) «, the nonlinear learning function parameter;
5) u, that is the learning rate.
We initialise the weight matrix W assigning the classi-
cal small random values. Otherwise we can use the first
patterns of the signal as the columns of the matrix: exper-
imental results show that the latter technique speeds up
the convergence of our neural estimator (n.e.). However,
it cannot be used with anomalously shaped signals, such
as stratigraphic geological signals.

Experimental results show that « can be fixed to: 1., 5.,
10., 20., even if for symmetric networks a smaller value of a
is preferable for convergence reasons. Moreover, the learn-
ing rate p can be decreased during the learning phase, but
we fixed it between 0.05 and 0.0001 in our experiments.

We use a simple criterion to decide if the neural net-
work has reached the convergence: we calculate the dis-
tance between the weight matrix at step k& + 1, Wy,
and the matrix at the previous step Wy, and if this dis-
tance is less than a fixed error threshold (e) we stop the
learning process.

We finally have the following general algorithm in
which STEP 4 is one of the neural learning algorithms
seen above in Sect. 3:

STEP 1 Initialise the weight vectors wo (i) Vi=1, ...,p
with small random values, or with orthonormalised sig-
nal patterns. Initialise the learning threshold ¢, the
learning rate u. Reset pattern counter k£ = 0.

STEP 2 Input the k-th pattern xx = [z(k), ...,z(k +
N +1)] where N is the number of input components.
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STEP 3 Calculate the output for each neuron y(j) =

w?(j)z; Vi=1, ...,p.
STEP 4 Modify the weights wgi1(:) = wg(i) +
meg(ye(i))er(d)  Vi=1, ...,p.
STEP 5 Calculate
p N
testnorma = Z (wi11(ij) — wi(i5))3. (10)
j=1i=1

STEP 6 Convergence test: if (testnorma < €) then goto
STEP 8.

STEP 7 k =k + 1. Goto STEP 2.

STEP 8 End.

- Frequency estimator

We exploit the frequency estimator Multiple Signal
Classificator (MUSIC). It takes as input the weight
matrix columns after the learning. The estimated signal
frequencies are obtained as the peak locations of the
following function (Kay 1988; Marple 1987):

1
PMUSIC:10g< i : ) (11)
1-300 lefw(@)?
where w(i) is the i—th weight vector after
learning, and e} is the pure sinusoidal vector:
el = (1,270 e U,

When f is the frequency of the i—th sinusoidal com-
ponent, f = f;, we have e = e; and Pyusic — oo. In
practice we have a peak near and in correspondence of the
component frequency. Estimates are related to the highest
peaks.

6. MUSIC and the Cramer-Rao lower bound

In this section we show the relation between the MUSIC
estimator and the Cramer-Rao bound following the nota-
tion and the conditions proposed by Stoica and Nehorai
in their paper (Stoica & Nehorai 1990).

6.1. The model

The problem under consideration is to determine the pa-
rameters of the following model:

y(t) = A(0)z(t) + e(t) (12)
where {y(t)} € C™*1 are the vectors of the observed data,
{z(t)} € C™*! are the unknown vectors and e(t) € C™*!

is the added noise; the matrix A(f) € C™*™ and the vec-
tor 6 are given by

A(0) = [a(wr)... a(wn)]; (13)
where a (w) varies with the applications. Our aim is to
estimate the unknown parameters of 8. The dimension n

of x(t) is supposed to be known a priori and the estimate
of the parameters of x(t) is easy once 0 is known.

0 = [w... wy]
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Now, we reformulate MUSIC to follow the above nota-
tion. The MUSIC estimate is given by the position of the
n smallest values of the following function:

f W) = a* (w)GG%a(w) = a* (w) [1 - 55] a(w). (14)
From Eq. (14) we can define the estimation error of a
given parameter. {&; — w;} has (for big N) an asintotic

Gaussian distribution, with 0 mean and with the follow-
ing covariance matrix:

Oy = % (HoI)™'Re {H ° (A*UA)T} (HoI)™" (15)

where Re (z) is the real part of x, where

H=D'GG*D = D* [I—A(A*A)”A*} D (16)
and where U is implicitly defined by:
AUA=P ' 4+oPt(A*A) ' P! (17)

where P is the covariance matrix of z (t). The elements
of the diagonal of the matrix Cyy are the variances of
the estimation error. On the other hand, the Cramer-Rao
lower bound of the covariance matrix of every estimator
of 0, for large N, is given by:
Cor = —{Re[Ho PT]} . (18)
2n

Therefore the statistical efficiency can be defined with the
condition that P is diagonal as:

[CMU]u‘ 2 [CCR]u‘ (19)

where the equality is reached when m increases if and only
if

a* (w)a(w) — oo as m — oo. (20)
For P non-diagonal, [Cmul;; > [Ccr);;- To adapt the

model used in the spectral analysis

p
y(k) = A/ + e(k) k=1,2,...M (21)
=1

where M is the total number of samples, to Eq. (14) we
make the following transformations, after fixing an integer
m > p:

yt) = [ut Yt+m—1]
a(w) = {1 oIw ejw(m—l)} (22)
x(t) = [Are/ Apedrt] t=1,.,M —m+1.

In this way our model satisfies the conditions of (Stoica
& Nehorai 1990). Moreover, Egs. (22) depend on
the choice of m which influences the minimum error
variance.
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Fig.1. CRB and standard deviation of n.e. estimates; abscissa is
the distance between the frequencies w2 and w1. CRB (down);
standard deviation of n.e. (up) with m = 5, ¢ = 0.5 and
M =50

6.2. Comparison between PCA-MUSIC and the
Cramer-Rao lower bound

In this subsection we compare the n.e. method with the
Cramer-Rao lower bound, by varying the frequencies dis-
tance, the parameters M and m and the noise variance.

From the experiments it derives that, fixed M and m,
by varying the noise (white Gaussian) variance, the n.e.
estimate is more accurate for small values of the noise
variance as shown in Figs. 1-3. For Aw small, the noise
variance is far from the bound. By increasing m the es-
timate improves, but there is a sensitivity to the noise
(Figs. 4-6). By varying M, there is a sensitivity of the es-
timator to the number of points and to m (Figs. 7-8). In
fact, if we have a quite large number of points we reach
the bound as illustrated in Figs. 9-10.

Therefore, the n.e. estimate depends on both the in-
crease of m and the number of points in the input se-
quence. Increasing the number of points, we improve the
estimate and the error approximates the Cramer-Rao
bound. On the other hand, for noise variances very small,
the estimate reaches a very good performance. Finally, we
see that in all the experiments shown in the figures we
reach the bound with a good approximation, and we can
conclude that the n.e. method is statistically efficient.

7. Experimental results
7.1. Introduction
In this section we show the performance of the neural

based estimator system using artificial and real data. The
artificial data are generated following the literature (Kay
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0 0.06 0.1 0.16 02
w2-w)

Fig. 2. CRB and standard deviation of n.e. estimates; abscissa is
the distance between the frequencies w> and wi1. CRB (down);
standard deviation of n.e. (up) with m = 5, ¢ = 0.001 and
M =50
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Fig. 3. CRB and standard deviation of n.e. estimates; abscissa is
the distance between the frequencies w2 and wi1. CRB (down);
standard deviation of n.e. (up) with m = 5, ¢ = 0.0001 and
M =50

1988; Marple 1987) and they are noisy sinusoidal mix-
tures. These are used to select the neural models for the
next phases and to compare the n.e. with P’s, by using
Montecarlo methods to generate samples. Real data, in-
stead, come from astrophysics: in fact, real signals are
light curves of Cepheids and a light curve in the Johnson’s
system.

In the Sects. 7.3 and 7.4, we use an extension of Music
to directly include unevenly sampled data without using
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0 0.06 0.1 0.16 02
w2-w)

Fig. 4. CRB and standard deviation of n.e. estimates; abscissa is
the distance between the frequencies w2 and w1. CRB (down);
standard deviation of n.e. (up) with m = 20, ¢ = 0.5 and
M =50
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Fig. 5. CRB and standard deviation of n.e. estimates; abscissa is
the distance between the frequencies w2 and w1. CRB (down);
standard deviation of n.e. (up) with m = 20, ¢ = 0.01 and
M =50

the interpolation step of the previous algorithm in the fol-
lowing way:

1
Pyusic = - (23)
M =370 lefw(@)?
where p is the frequency number, w(i) is the

i—th weight vector of the PCA neural network af-
ter the learning, and e? is the sinusoidal vector:
L6

ejzﬂft(L—m]H
t(L,l)} are the first L components of the temporal

H _
e = €
coordinates of the uneven signal.

where {to, t1,...,
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Fig. 6. CRB and standard deviation of n.e. estimates; abscissa is
the distance between the frequencies w> and wi1. CRB (down);
standard deviation of n.e. (up) with m = 20, ¢ = 0.0001 and
M =50
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{W2-w1)

014 016 018 02

Fig. 7. CRB and standard deviation of n.e. estimates; abscissa is
the distance between the frequencies wy and wi. CRB (down);
standard deviation of n.e. (up) with m = 5, ¢ = 0.01 and
M =20

Furthermore, to optimise the performance of the
PCA neural networks, we stop the learning process
when >0, |eIJ;Iw(i)|2 > M Vf, so avoiding overfitting
problems.

7.2. Models selection

In this section we use synthetic data to select the neural
networks used in the next experiments. In this case, the
uneven sampling is obtained by randomly deleting a fixed
number of points from the synthetic sinusoid-mixtures:
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Fig. 8. CRB and standard deviation of n.e. estimates; abscissa is
the distance between the frequencies w2 and w1. CRB (down);
standard deviation of n.e. (up) with m = 10, ¢ = 0.01 and
M =20
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Fig.9. CRB and standard deviation of n.e. estimates; abscissa is
the distance between the frequencies wy and wi. CRB (down);
standard deviation of n.e. (up) with m = 20, 0 = 0.01 and
M =100

this is a widely used technique in the specialised litera-
ture (Horne & Baliunas 1986).

The experiments are organised in this way.
First of all, we wuse synthetic unevenly sam-
pled signals to compare the different neural al-
gorithms in the neural estimator (n.e.) with the
Scargle’s P.

For this type of experiments, we realise a statistical
test using five synthetic signals. Each one is composed by
the sum of five sinusoids of randomly chosen frequencies
in [0,0.5] and randomly chosen phases in [0,27] (Kay
1988; Karhunen & Joutsensalo 1994; Marple 1987), added
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Fig.10. CRB and standard deviation of n.e. estimates; ab-
scissa is the distance between the frequencies w2 and wi. CRB
(down); standard deviation of n.e. (up) with m = 50, o = 0.001
and M = 100

to white random noise of fixed variance. We take 200
samples of each signal and randomly discard 50% of them
(100 points), getting an uneven sampling (Horne &
Baliunas 1986). In this way we have several degree of
randomness: frequencies, phases, noise, deleted points.

After this, we interpolate the signal and evaluate the P
and the n.e. system with the following neural algorithms:
robust algorithm in Eq. (4) in the hierarchical and sym-
metric case; nonlinear algorithm in Eq. (8) in the hier-
archical and symmetric case. Each of these is used with
two nonlinear learning functions: g¢;(¢) = tanh(at) and
g2(t) = sgn(t)log(1l + alt|). Therefore we have eight dif-
ferent neural algorithms to evaluate.

We chose these algorithms after we made several ex-
periments involving all the neural algorithms presented in
Sect. 3, with several learning functions, and we verified
that the behaviour of the algorithms and learning func-
tions cited above was the same or better than the others.
So we restricted the range of algorithms to better show
the most relevant features of the test.

We evaluated the average differences between target
and estimated frequencies. This was repeated for the five
signals and then for each algorithm we made the average
evaluation of the single results over the five signals. The
less this averages were, the greatest the accuracy was.

We also calculated the average of the number of epochs
and CPU time for convergence. We compare this with the
behaviour of P.

Shared signals parameters are: number of frequencies
= 5, variance noise = 0.5, number of sampled points
= 200, number of deleted points = 100.

Signal 1: frequencies = 0.03,0.19,0.25,0.33,0.46 1/s
Signal 2: frequencies = 0.02,0.11,0.20,0.33,0.41 1/s
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Fig.11. Synthetic signal

Signal 3: frequencies = 0.34,0.29,0.48,0.42,0.04 1/s
Signal 4: frequencies = 0.32,0.20,0.45,0.38,0.13 1/s
Signal 5: frequencies = 0.02,0.37,0.16,0.49,0.31 1/s.
Neural parameters: a« = 10.0; = 0.0001; e = 0.001; num-
ber of points in each pattern N = 110 (these are used
for almost all the neural algorithms; however, for a few of
them a little variation of some parameters is required to
achieve convergence).

Scargle parameters: Tapering = 30%, po = 0.01.

Results are shown in Table 1:

We have to spend few words about the differences of
behaviour among the neural algorithms elicited by the ex-
periments. Nonlinear algorithms are more complex than
robust ones; they are relatively slower in converging, with
higher probability to be caught in local minima, so their
estimates results are sometimes not reliable. So we restrict
our choice to robust models. Moreover, symmetric mod-
els require more effort in finding the right parameters to
achieve convergence than the hierarchical ones. The per-
formance, however, are comparable.

From Table 1 we can see that the best neural algorithm
for our aim is the n.5 in Table 1 (Eq. (4) in the symmetric
case with learning function ¢, (t) = tanh(at)).

However, this algorithm requires much more efforts in
finding the right parameters for the convergence than the
algorithm n.2 from the same table (Eq. (4) in the hierar-
chical case with learning function g2(t) = sgn(¢) log(1 +
alt|)), which has performance comparable with it.

For this reason, in the following experiments when we
present the neural algorithm, it is algorithm n.2.

We show, as an example, in Figs. 11-13 the estimate
result of the n.e. algorithm and P on signal n.1.

We now present the result for whitening pre-processing
on one synthetic signal (Figs. 14-16). We compare this
technique with the standard n.e.
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Signal frequencies = 0.1,0.15,0.2,0.25,0.3 1/s
Neural network estimates with whitening: 0.1, 0.15, 0.2,
0.25, 0.3 1/s.
Neural network  estimates
0.1,0.15,0.2,0.25,0.3 1/s.
From this and other experiments we saw that when
we used the whitening in our n.e. the results were worse
and more time consuming than the ones obtained using
the standard n.e. (i.e. without whitening the signal). For
these reasons whitening is not a suitable technique to im-
prove our n.e.

without  whitening:

7.8. Comparison of the n.e. with the Lomb’s periodogram

Here we present a set of synthetic signals generated by ran-
dom varying the noise variance, the phase and the deleted
points with Montecarlo methods. The signal is a sinusoid
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Table 1. Performance evaluation of n.e. algorithms and P on synthetic signals

average normalised differences
Algorithm sigl sig2 sig3 sigd sigh TOT average average
n. epochs time
1. Eq. (4) hierarc.+g1 0.000 | 0.002 | 0.004 | 0.000 | 0.004 | 0.0020 898.4 189.2 s
2. Eq. (4) hierarc.+g2 0.000 | 0.002 | 0.004 | 0.000 | 0.004 | 0.0020 667.2 105.2 s
3. Eq. (8) hierarc.4+g1 0.000 | 0.002 | 0.005 | 0.000 | 0.004 | 0.0022 5616.2 13674 s
4. Eq. (8) hierarc.+g2 0.000 | 0.002 | 0.005 | 0.000 | 0.004 | 0.0022 3428.4 1033.4 s
5. Eq. (4) symmetr.+g1 | 0.000 | 0.002 | 0.002 | 0.000 | 0.004 | 0.0016 814.0 100.2 s
6. Eq. (4) symmetr.+¢2 | 0.000 | 0.002 | 0.004 | 0.002 | 0.004 | 0.0024 855.2 124.4 s
7. Eq. (8) symmetr.4+¢g1 | 0.000 | 0.002 | 0.004 | 0.002 | 0.004 | 0.0024 6858.2 1185 s
8. Eq. (8) symmetr.+g¢2 | 0.000 | 0.002 | 0.004 | 0.002 | 0.004 | 0.0024 3121.8 675.8 s
Periodogram 0.004 | 0.000 | 0.002 | 0.004 | 0.004 | 0.0028 22.2's
8 T T T _20 T T T T
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Fig. 14. Synthetic signal

(0.5 cos(270.1t + ¢) + R(t)) with frequency 0.1 Hz, R(t)
the Gaussian random noise with 0 mean composed by 100
points, with a random phase. We follow Horne & Baliunas
(Horne & Baliunas 1986) for the choice of the signals.

We generated two different series of samples depend-
ing on the number of deleted points: the first one with 50
deleted points, the second one with 80 deleted points. We
made 100 experiments for each variance value. The results
are shown in Table 2 and Table 3, and compared with the
Lomb’s P because it works better than the Scargle’s P
with unevenly spaced data, introducing confidence inter-
vals which are useful to identify the accepted peaks.

The results show that both the techniques obtain a
comparable performance.

Fig. 15. n.e. estimate without whitening

7.4. Real data

The first real signal is related to the Cepheid SU Cygni
(Fernie 1979). The sequence was obtained with the pho-
tometric tecnique UBV RI and the sampling made from
June to December 1977. The light curve is composed by
21 samples in the V band, and a period of 3.89, as shown
in Fig. 17. In this case, the parameters of the n.e. are:
N =10,p =2, a = 20, 4 = 0.001. The estimate frequency
interval is [0(1/JD),0.5(1/JD)]. The estimated frequency
is 0.26 (1/JD) in agreement with the Lomb’s P, but with-
out showing any spurious peak (see Figs. 18 and 19).
The second real signal is related to the Cepheid U Aql
(Moffet & Barnes 1980). The sequence was obtained with
the photometric tecnique BV RI and the sampling made
from April 1977 to December 1979. The light curve is



Table 2. Synthetic signal with 50 deleted points, frequency interval [
(Xmax -
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Eus ”ND}, MSE = Mean Square Error, T = total period

T T

Xmin) and N, = total number of points
Lomb’s P n.e.
Error Variance 0> | SN.R. £ = X% | Mean | Variance MSE Mean Variance MSE
0.75 0.2 0.1627 0.0140 0.0178 0.1472 0.0116 0.0131
0.5 0.5 0.1036 0.0013 0.0013 0.1020 | 3.0630 e~* | 3.0725 %
0.1 12.5 0.1000 | 1.0227 e~® | 1.0226 ¢~® | 0.1000 | 6.1016 e~® | 6.2055 8
0.001 1250 0.1000 | 2.905 e~° | 2.3139 e7? | 0.1000 | 3.8130 =32 0.00000

Table 3. Synthetic signal with 80 deleted points, frequency interval [2?", "gﬂ, MSE = Mean Square Error, T' = total period

(Xmax — Xmin) and N, = total number of points
Lomb’s P n.e.
Error Variance 0> | SN.R. £ = X% | Mean | Variance MSE Mean | Variance MSE
0.75 0.2 0.2323 0.0205 0.0378 0.2055 0.0228 0.0337
0.5 0.5 0.2000 0.0190 0.0288 0.2034 0.0245 0.0349
0.1 12.5 0.1000 | 2.37e 7 | 23648 e | 0.1004 | 1.8437 7% | 1.8435 ¢ °
0.001 1250 0.1000 | 8.6517 e™® | 8.5931 =% | 0.1000 | 4.7259 ¢=8 | 4.7259 ¢~8
v
' '
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Fig.16. n.e. estimate with withening

composed by 39 samples in the V band, and a period
of 7.014, as shown in Fig. 20. In this case, the parameters
of the n.e. are: N = 20, p = 2, « = 5, p = 0.001. The
estimate frequency interval is [0(1/JD),0.5(1/JD)]. The
estimated frequency is 0.1425 (1/JD) in agreement with
the Lomb’s P, but without showing any spurious peak (see
Figs. 21 and 22).

The third real signal is related to the Cepheid X Cygni
(Moffet & Barnes 1980). The sequence was obtained with
the photometric technique BV RI and the sampling made
from April 1977 to December 1979. The light curve is com-
posed by 120 samples in the V' band, and a period of
16.384, as shown in Fig. 23. In this case, the parameters
of the n.e. are: N =70, p = 2, « = 5, p = 0.001. The
estimate frequency interval is [0(1/JD),0.5(1/JD)]. The
estimated frequency is 0.061 (1/JD) in agreement with

Fig.17. Light curve of SU Cygni

the Lomb’s P, but without showing any spurious peak
(see Figs. 24 and 25).

The fourth real signal is related to the Cepheid T Mon
(Moffet & Barnes 1980). The sequence was obtained with
the photometric technique BV RI and the sampling made
from April 1977 to December 1979. The light curve is com-
posed by 24 samples in the V band, and a period of 27.024,
as shown in Fig. 26. In this case, the parameters of the
n.e. are: N =10, p =2, « = 5, . = 0.001. The estimate
frequency interval is [0(1/JD), 0.5(1/JD)]. The estimated
frequency is 0.037 (1/JD) (see Fig. 28).

The Lomb’s P does not work in this case because there
many peaks, and at least two greater than the threshold
of the most accurate confidence interval (see Fig. 27).

The fifth real signal we used for the test phase is a light
curve in the Johnson’s system (Binnendijk 1960) for the
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Fig. 20. Light curve of U Aql
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eclipsing binary U Peg (see Figs. 29 and 30). This system
was observed photoelectrically in the effective wavelengths
5300 A and 4420 A with the 28-inch reflecting telescope
of the Flower and Cook Observatory during October and
November, 1958.

We made several experiments with the n.e., and we
elicited a dependence of the frequency estimate on the
variation of the number of elements for input pattern.
The optimal experimental parameters for the n.e. are:
N =300, a = 5; u = 0.001. The period found by the n.e. is
expressed in JD and is not in agreement with results cited
in literature (Binnendijk 1960), (Rigterink 1972), (Zhai
et al. 1984), (Lu 1985) and (Zhai et al. 1988). The fun-
damental frequency is 5.4 1/JD (see Fig. 31) instead of
2.7 1/JD. We obtain a frequency double of the observed
one. Lomb’s P has some high peaks as in the previous
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experiments and the estimated frequency is always the
double of the observed one (see Fig. 32).

8. Conclusions

We have realised and experimented a new method for
spectral analysis for unevenly sampled signals based on
three phases: preprocessing, extraction of principal eigen-
vectors and estimate of signal frequencies. This is done,
respectively, by input normalization, nonlinear PCA neu-
ral networks, and the Multiple Signal Classificator algo-
rithm. First of all, we have shown that neural networks
are a valid tool for spectral analysis.

However, above all, what is really important is that
neural networks, as realised in our neural estimator sys-
tem, represent a new tool to face and solve a problem
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tied with data acquisition in many scientific fields: the
unevenly sampling scheme.

Experimental results have shown the validity of our
method as an alternative to Periodogram, and in general
to classical spectral analysis, mainly in presence of few
input data, few a priori information and high error prob-
ability. Moreover, for unevenly sampled data, our system
offers great advantages with respect to P. First of all, it
allows us to use a simple and direct way to solve the prob-
lem as shown in all the experiments with synthetic and
Cepheid’s real signals. Secondly, it is insensitive to the
frequency interval: for example, if we expand our inter-
val in the SU Cygni light curve, while our system finds
the correct frequency, the Lomb’s P finds many spuri-
ous frequencies, some of them greater than the confidence
threshold, as shown in Figs. 33 and 34.
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Fig. 33. n.e. estimate of SU Cygni with enlarged window

Fig. 34. Lomb’s P of SU Cygni with enlarged window

Furthermore, when we have a multifrequency signal,
we can use our system also if we do not know the fre-
quency number. In fact, we can detect one frequency at
each time and continue the processing after the cancella-
tion of the detected periodicity by IIR filtering.

A point worth of noting is the failure to find the right
frequency in the case of eclipsing binary for both our
method and Lomb’s P. Taking account of the morphol-
ogy of eclipsing light curve with two minima, this fact can
not be of concern because in practical cases the impor-
tant thing is to have a first guess of the orbital frequency.
Further refinement will be possible through a wise plan-
ning of observations. In any case we have under study this
point to try to find a method to solve the problem.
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