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Abstract. We identified 97 strong pulsars from the NRAO
VLA Sky Survey (NVSS) at 1.4 GHz north of Dec(J2000)
= —40°. The total flux density, linear polarization in-
tensity and polarization angle (PA) of all pulsars are
extracted from the NVSS catalog. The well-calibrated
PA measurement of 5 pulsars can be used for absolute
PA calibrations in other observations. Comparing the
source positions with those in the pulsar catalog, we got
the first measurement of the proper motion upper limit of
PSR B0031—07, which is pio cosd = —102 & 74 mas yr—!
and ps = —105 4 78 mas yr—1.
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1. Introduction

Compared with other types of radio sources, pulsars are
known to have strong polarization, even up to 100% if one
observes them with high time resolutions. Pulsar polar-
ization would be smeared somehow if they are observed
as continuum point sources over a duration much longer
than a pulsar period, mainly because of the fast swing
of polarization angle across a pulse profile. However, we
will show in this paper that is not so serious as generally
believed.

Pulsars have high (birth) velocities, on average
450 km s~ (Lyne & Lorimer 1994) and maybe up to
1600 km s~ for individuals (e.g. Cordes & Chernoff 1998),
much faster than that of other types of stars (typically a
few tens km s~!). The high velocity was probably caused
by the asymmetric kick during supernova explosion when
a pulsar was born. This leads to a large proper motion
for (nearby) pulsars. However, measuring the proper
motion is not an easy task since the precise positions of
a pulsar at well-separated epochs have to be measured.
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Up to now, there are 96 pulsars with proper motion
measurements (e.g. Taylor et al. 1993; Fomalont et al.
1997).

Recently, the National Radio  Astronomical
Observatory (NRAO) Very Large Array (VLA) Sky
Survey (NVSS) has been finished, which covers the sky
north of Dec(J2000) = —40° at 1.4 GHz (Condon et al.
1998). The survey detected more than 1.8 million sources,
with polarization measurements, down to a flux density
limit about 2.5 mJy. Observations have a resolution
of 45", but the positional accuracy is a few arcsec for
weak sources, and much better for strong sources. The
observations were made with two IF channels at 1.365
and 1.435 GHz with an effective bandwidth of 42 MHz
each. Most sources in the NVSS were observed in three
pointings of 23 s each. The final sky map is the weighted
sum from these pointings (Condon et al. 1998).

We had tried to identify the pulsars from the NVSS
catalog, and then to investigate the pulsar polarization
properties and proper motions from continuum observa-
tions. In the sky region covered by the NVSS, there are
520 known pulsars according to the updated pulsar catalog
of Taylor et al. (1993). Updated catalog was kindly pro-
vided by Manchester. Using the latest version of the NVSS
catalog (with 1814748 entries), we identified 97 strong pul-
sars according to positional coincidence. During revising
this paper for publication, we noticed that similar identi-
fication work has been done by Kaplan et al. (1998), but
they emphasized the other aspects, such as position accu-
racy, scintillation effects and completeness of detections.
Comparing to Kaplan et al. (1998), we got 24 further new
identifications. In the following, we will not repeat their
work, but present our results in Sect. 2. We discuss briefly
in Sect. 3 about scintillations (Sect. 3.1), pulsar polariza-
tion properties (Sect. 3.2), and proper motions (Sect. 3.3).
We compared the pulsar positions with those from the pul-
sar catalog if the epochs were separated over more than
5 years, and got the upper limits of proper motion of 18
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pulsars, including one pulsar which has had no proper mo-
tion measurements previously.

2. Identification and results

We took positions of pulsars from the updated catalog of
Taylor et al. (1993). PSR names in J2000, and B1950 if ap-
plicable, are given in the Cols. (1) and (2) of the Table 1.
Their positions are given in Cols. (3) and (4), generally
with an accuracy better than 0.1”, but occasionally up
to a few arcsec. These positions were determined by tim-
ing observations or interferimetric measurements at epoch
for the position! in Col. (5). For comparison, we list in
Col. (6) the flux density at 1.4 GHz from pulsar catalog,
which were normally obtained from the average of sev-
eral pulsar observation sessions to overcome scintillation
effects. We searched for radio sources in the NVSS catalog
within 30” angular distance around each of the 520 pulsar
positions. Only 106 radio sources were found to match the
positions and are probably pulsars. The positions of the
NVSS sources are listed in Cols. (7) and (8). The angu-
lar offset from pulsar positions “A” in arcsec is given in
Col. (9). The flux density and polarization parameters of
the NVSS sources extracted from the NVSS catalog are
listed in Cols. (10)—(13). A blank in these columns indi-
cates no significant detection above the sensitivity limit of
linear polarization of the NVSS (~0.5 mJy). We marked in
Col. (14) if there was any further consideration during
identification.

Note that the epochs for pulsar position in the pulsar
catalog differ from that of NVSS observations. However,
even if a pulsar has the largest proper motion, e.g. 400 mas
per year, then after 20 years, the position offset would be
8". So, our search in 30" should not miss any known pulsar
if it is detectable by the NVSS2.

On the other hand, the NVSS was done over a long
period, from ~1993 to ~1996. We will take an approxi-
mate epoch MJD 49718 (~1995.0) in following discussion.
There should be only a very small position offset (< 1”)
caused by pulsar proper motions, if any, over the NVSS
observation period, much smaller than the position un-
certainties of the NVSS sources listed in Table 1. If the
position of a pulsar was measured at an epoch later than
MJD 47000, we will not consider its proper motion during
the identification process for the same reason.

! There are two epochs in the pulsar catalog, one (“pe-
poch”) for pulsar period and period derivatives and the other
(“epoch”) for pulsar position. If “epoch” was not available,
we used the “pepoch” as instructed by Manchester (private
communications).

2 We missed 4 pulsars which appear in Table 1 of Kaplan
et al. (1998): PSRs B1823-11, B1900-06, B1901+10, and
B2323+63. Their position offsets to the NVSS sources or
position uncertainties are too large (> 30”) to make significant
assessment. For the same reason, we removed J1848+40651
from our sample which was included by Kaplan et al. (1998).
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The first step for identification is to check the position
offset A. At this stage, we ignored the proper motion. If
A is smaller than twice of the total position uncertainty,

ie. A S 24/02 + 02, then we attribute the NVSS

source as being a positive identification of a pulsar. This
process yielded the first 90 positive detections. If any pul-
sar position was obtained at an epoch several years ago,
the pulsar must have had only a very small proper motion
so that the position offsets are not significant.

Now we consider the remaining 16 sources more care-
fully, which are marked with “?” in Col. (14) of Table 1.

Nine Confusion cases: (a) PSR B0531421 (Crab)
and PSR B1951+432 are confused by their associated
supernova remnants. We marked them in Notes, i.e.
Col. (14), of Table 1 with “SNR”. (b) PSRs B1112+50,
B1829—10 and B1831—00 are confused by their nearby
strong sources which have much larger flux density
(more than 10 times) than that from the pulsar catalog.
One NVSS source was detected 28.1” (formally 7.80)
away from PSR B1920421, too large to be proper
motion for this distant pulsar (distance ~12.5 kpc).
We consider these detections unlikely and mark with
“no” in Notes to stand for “no detection”. (c) PSRs
B1744—24A and J2129+1210A, (maybe also B1745—20
as indicated by Kaplan et al. 1998), are confused by
other continuum sources in the host globular clusters
Terzan-5 and M 15, (and NGC 64407), respectively. They
are marked with “glbc”. (d) PSR B1718-35 is a marginal
case, maybe confused by a source 19”4 away, with 4.70
for position offset and 27.7 mJy in flux (pulsar: 10.0 mJy).

Seven detection cases: (a) The position offset of the
NVSS source to PSR B1831—04 is only 4.75” (formally
2.30, or 2.60 rather than 14¢ using the new position in
Kaplan et al. 1998), much smaller than the beam size of
the NVSS. Although Kaplan et al. (1998) suggested oth-
erwise, we believe the pulsar is detected. The consistent
flux densities of the pulsar and the NVSS source confirm
the identification. We mark such a case as “yes” in the
Notes. (b) PSRs B0823+26, B1133+16, B2016+28, (and
B2154+40) have small position offsets caused by proper
motions (see Sect. 3.3). (c) PSR B1820-31 is detected with
a position offset of 12.5” = 2.60, as confirmed by consis-
tent flux density, and more importantly, by the highly lin-
ear polarization of the NVSS source. (d) A marginal case
is the strong pulsar PSR B2020+28. The NVSS survey de-
tected a very weak source 2.20 away, too weak to believe
the identification (see more discussion below). However,
highly linear polarization of the source suggests that it is
the pulsar. We mark in the Notes “yes?” for this case.

In all, the NVSS detected 97 pulsars, including the 73
which appeared in Kaplan et al. (1998) and 24 new iden-
tifications® marked with “*” in the Notes.

% The PSR J1615-39 in Table 1 of Kaplan et al. (1998) is
missing from the pulsar catalog available to us.
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Table 1. continued
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Fig.1. The histograph for the flux comparison. Some pulsars
(e.g. these in Table 1) have been missed in the left-half of the
distribution (i.e. when Shvss/Spsrcat < 1), because scintillation
makes them weaker than the NVSS sensitivity

3. Discussion
8.1. Scintillation and undetected pulsars

The VLA measurements of the flux densities S1 4 of most
identified pulsars, averaged over about 84 MHz bandwidth
and 3 x 23 s in time, are comparable to the flux densi-
ties published in Lorimer et al. (1995) and Gould & Lyne
(1998). They are generally within a factor of 2 of the pub-
lished densities (see Fig. 1), but sometimes up to a fac-
tor of 3 or more. Most of undetected pulsars (~400) have
flux densities below 2 or 3 mJy. Interstellar scintillation
(e.g. Gupta et al. 1994) both helps and hinders the de-
tections (Cordes & Lazio 1991). Some pulsars which have
a flux density less than 2 mJy in the pulsar catalog have
been detected in the NVSS with a larger flux density. The
scintillation effect is more obvious for strong pulsars. For
example, PSR B2020+-28 should be as strong as 38.0 mJy,
but in the NVSS it appears to be a highly polarized source
of 3.6 £ 0.5 mJy. Among 61 pulsars with known flux den-
sities larger than 5 mJy, about one fourth were missed by
the NVSS (as listed in Table 2), some due to scintillation,
some due to confusion (Condon, private communication).

3.2. Polarization

When pulsars are observed as continuum radio sources,
the polarized intensity, L, and polarization position angle,
PA, are calculated from the integrated @ and U values of
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Table 2. Pulsars stronger than 5 mJy but not detected by the

NVSS
PSR B RA(2000)  Dec(2000) S1.4  Notes
h m s o ! " mJy
1937421 19 39 38.55 +213459.1 16.0 Conf.
1800—21 18 03 51.35 —213707.2 14.6 Scin.
2319460 23 21 55.19 460 24 30.6 12 Scin.
1845—01 18 48 24.00 —-012358.2 10 Scin.
2255458 22 57 57.70 +59 09 14.9 9.2  Scin.
1839—-04 18 42 26.49 —03 59 59.2 8.5  Conf.
1952429 19 54 22.58 +29 23 17.9 8 Scin.
1815—-14 18 18 23.79 —14 22 35.9 7.4  Scin.
1754—24 17 57 41.02 —24 21 56.8 7.1  Conf.
2011438 20 13 1049 +38 45 44.8 6.4  Scin.
1737-30 17 40 33.73 —30 15 41.9 6 Scin.
1919421 19 21 44.80 421 53 01.8 6 Scin.
1758—23 18 01 19.86 —23 06 16.8 5.7  Scin.
1849400 18 52 28.00 400 31 55.9 5.2 Scin.

the final images, i.e., over all the observation time and the
bandwidth, so that

me:¢(ZQ)?+(ZU)i 1)
and
a1 s (51 .

In pulsar observations, however, the total linearly polar-
ized intensity is

L= [V (3)
t

and the polarization position angle PA is
1 180 U

PApSr = 5 T arctan <6) (4)

for each pulse longitude. The PA often swings more than
90° over a pulse. Since a positive value of ) or U in one
part of a pulse may cancel a negative value in another part,
it is believed that the pulsar emission is depolarized in
contiuum observations. Furthermore, the bandwidth de-
polarization occurs for pulsars with high rotation mea-
sures. Therefore the L/S in Table 1 should be taken as
the lower limit of pulsar polarization.

Even so, pulsars are still the sources with the high-
est polarization compared to other kinds of objects (see
Fig. 2). As seen from Table 1, some pulsars have very high
linear polarization, such as PSRs B1742-30 (L/S ~ 90%)
and PSR B1929+10 (L/S ~ 63%), even after the smearing
and depolarization.

Since the NVSS has very accurate absolute position
angle calibrations (< 0.2°), the well measured PA of a
few pulsars (with error < 2°) may help to make an abso-
lute PA calibration in pulsar observations. One example
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Fig. 2. Histograms of polarization percentage of a few kinds of
objects: quasars, BL-Lac objects, all radio sources in one sky
area, and pulsars. Note that the abscissa is up to 100% for
pulsars, but just 25% for other objects

Table 3. Pulsar calibrators for absolute polarization angle

PSR J PSRB  PAYYSSun, RM
@) (rad m~?)
193241059  1929+10 46+1 —6.1+£1.0
0742—2822  0740—28 —33+£1 150440.1
202245154  2021+51 11+£2 —6.5409
054342329 0540423 —2542 8.7+0.7
0630—2834  0628—28 —31+2 46.2+0.1

is shown in Fig. 3. First, using the VLA measurements
of PA at 1400 MHz and the RM values, we calculated
the averaged PA over the pulse at the observation fre-
quency accordingly. Second, from the pulsar observations,
we got PA for calibration pulsars using Eq. (2) from the
pulse profiles (including interpulse if applicable) of Stokes
parameters ) and U. Third we compared them to get an
offset which represents the instrument PA offset, and used
it to calibrate all pulsar observations.

In Table 3, we listed 5 pulsars which can be used for
calibration purposes. All of them have strong linear polar-
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Fig. 3. Calibration for absolute polarization angle. Pulsar data
were observed by von Hoensbroech & Xilouris (1997). In the
lower panel, the total intensity, I, and linearly polarized inten-
sity, L, are plotted with a thick continuum line and a dot-dash
line, respectively. (The interpulse is almost 100% polarized.)
In the top panel, the original PA data are plotted with a thin
line (and with an error bar on every second point), and the
calibrated PA data are plotted with a thick line

ized intensity that can be easily detected, and their rota-
tion measures RM are either quite small (<10 rad m~2)
or accurately measured (ory < 1 rad m~2). None of
them has any mode-changing (e.g. PSR B1237+25 and
PSR B1822+409) or complicated variations in PA across
the profile (e.g. PSR B1933+16). All pulsars in Table 3
satisfy opa + orm - 6(A?) < 3°, where 6(\?) was the dif-
ference of the wavelengths squared, and was taken as 1.0.

3.3. Proper motions

Pulsar proper motion is a very important quantity to be
measured, so that pulsar velociaties can be determined.
Pulsar timing can be used to determine the proper mo-
tions of millisecond pulsars because of their great tim-
ing stability (e.g. Nice & Taylor 1995). However, for most
pulsars, the proper motions can only be measured by de-
termining the pulsar position precisely at two or more
well-separated epochs using interferometry (e.g. Fomalont
et al. 1997).

We compared the pulsar positions given in the pulsar
catalog with those from the NVSS whose epoch is sim-
ply taken as MJD = 49718, and calculated pulsar proper
motions if possible. The results are listed in Table 4.
Pulsars with uncertainties of proper motion larger than
200 mas yr—! have been deleted. Because of the large un-
certainty of the NVSS positions, we obtained only a few
significant measurements: proper motion in declination di-
rection of PSR B1133+16, and that in right ascension of
PSRs B0823+26 and B2016+28. While the former two
are consistent with the previous measurements made by
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Table 4. Pulsar proper motions

577

PSR B A RA A Dec

Epoch hoe COS O s
arcsec arcsec MJD mas yr—* mas yr*
0031-07 —2.53 + 1.84 26 £ 1.9 40690 —102 £ 74 —105 + 78
0329+54 —0.61 + 0.44 0.9 £ 0.6 40105 —23 £ 16 34 + 23
0450—-18 —1.15 £+ 1.01 —2.3 + 1.0 46573 —133 £ 117 267 + 116
0628—28 1.07 + 1.21 —-1.8 + 1.2 40585 42 + 48 71 £ 48
0740—28 —0.53 &= 0.80 —1.3 + 0.8 46573 —61 + 92 150 = 93
0823426 1.21 + 094 -3.7 + 1.0 40264 46 + 36 —142 + 38
0950+08 —0.15 + 0.45 1.3 +£ 0.6 46058 —14 £ 44 129 £ 59
1133+16 —0.29 + 0.72 6.2 + 0.8 42364 —-14 £ 35 307 + 40
1237+25 —0.54 + 0.82 —-1.0 £ 0.9 46460 —-61 + 91 —112 + 100
1541409 0.74 + 1.49 —-2.0 £ 1.5 42304 36 £ 73 —-98 £ 74
1749—-28 1.72 £ 053 —-0.8 £ 0.9 40352 67 £ 20 31 £ 33
1818—04 —6.74 +£ 2.69 —1.5 + 2.7 40614 —270 + 108 60 £+ 108
1857—26 1.08 £ 0.95 1.7 £ 1.1 46573 125 £ 110 —197 + 132
1933+16 —0.14 +£ 0.58 —0.9 £ 0.7 40213 -5 + 22 —-34 £ 26
1946+35 —1.34 £ 2.56 —3.1 £ 2.9 42221 —65 £ 124 —151 + 141
2016+28 3.y42 £ 0.79 0.4 £ 0.8 40105 130 £ 30 15 + 30
2021+51 —-0.46 £ 093 —0.6 + 1.0 40614 —18 £ 37 —24 £ 40
2310+42 —2.75 £+ 1.98 04 + 1.4 43891 —172 £+ 124 25 + 87

Lyne et al. (1982), the latter one is marginally not. Cross-
checking with Table 2 of Taylor et al. (1993), we found
that all other measurements in Table 4 are consistent with
(though poorer than) those given in the pulsar catalog,
except for one new upper limit of PSR B0031-07. VLA
A-array observations of these pulsars in Table 1 should
provide much more accurate positions, and hence could
produce the first measurement of the proper motions of
about 20 pulsars.

PSR B0031—07 is a nearby pulsar with distance 0.68
kpc. Its proper motion upper limit indicates that the pul-
sar has a velocity of 470 4 346 km s~!, quite nor-
mal according to the pulsar velocity distribution (Lyne
& Lorimar 1994).

4. Summary

We identified about 97 strong pulsars from the NVSS cat-
alog and presented the flux densities at 1.4 GHz. The
parameters of linear polarization are independent, but
slightly different (see Egs. (1), and (2) above), measure-
ments from those obtained from normal pulsar observa-
tions. Interstellar scintillation both helps and hinders the
detection of pulsars. Table 1 presents all known pulsars de-
tected by the NVSS. Well-calibrated VLA measurements
of the average polarization angles of 5 strong pulsars can
be used for PA calibrations for pulsar observations. By
comparing the pulsar positions from the pulsar catalog
and those from the NVSS, we got a proper motion upper
limit of PSR B0031—-07.
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