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Abstract. In this paper we present a method to assign
statistical weights to radial-velocity measurements of a bi-
nary system of which one of the components is a variable
star. The basic idea of the method is to separate the radial-
velocity changes due to the intrinsic variability from those
due to the orbital motion. This can be achieved if part of
the data set consists of good coverages of the intrinsic
variability cycle. These full coverages are used to estimate
the variability for the nights on which only one or a few
spectra were obtained. Our technique is applicable when
the intrinsic variability has a period that is considerably
shorter than the orbital period.

Once weights have been assigned, existing methods to
derive the orbital parameters can be used with better ac-
curacy compared to the case where all data points are
treated as if no intrinsic variability were present (equal
weights). We illustrate our method and compare the or-
bital solution obtained with and without assigning weights
for three pulsating stars in a binary system: βCru, εPer,
and κ Sco.

Key words: methods: statistical — stars: oscillations —
binaries: spectroscopic

1. Introduction

The determination of the orbital parameters of the compo-
nents of a binary has been the subject of many investiga-
tions. It is not our intention to treat these existing meth-
ods, but rather to focus on one particular case, namely
the determination of the orbital parameters of a binary
that consists of at least one intrinsically variable compo-
nent. All existing methods developed so far do not take
into account the fact that intrinsic variability, such as pul-
sation, can significantly influence the radial velocities. In
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cases where the pulsation results in a peak-to-peak am-
plitude which is comparable to, or a large fraction of, the
orbital amplitude, accurate orbital parameters are hard
to determine. In such a case, the intrinsic variability cycle
needs to be fully covered with observations in order to be
able to determine the average radial velocity due to the
binary motion. Having a full cover of the variability cycle
is, however, a condition that is often not fulfilled.

The usual criterion of having found the best orbit when
the rms is minimal breaks down in the case that one of the
components exhibits intrinsic variability, especially when
the intrinsic and extrinsic variations have comparable am-
plitudes. In this paper, we develop a method to treat cases
for which single radial-velocity measurements are com-
bined with radial-velocity data that do cover a complete
pulsation cycle.

Our work originates from a systematic observational
study of line-profile variability in pulsating B-type stars
of which more and more targets turn out to be a mem-
ber of a binary system (Aerts et al. 1998b). These variable
stars have pulsation periods between a few hours and a few
days and are often multiperiodic. This intrinsic variability
is combined with extrinsic variability due to a companion.
Orbital periods range from a few days up to years. Our
main aim of observing these stars is to disentangle the
pulsational behaviour by studying the line-profile varia-
tions caused by the pulsation(s) in full detail. Since the
study of line-profile variability demands rather large tele-
scopes with accurate detectors, observing runs typically
extend over only a few days or weeks at best. The (of-
ten unknown) binary nature of the objects can prevent
a determination of the pulsational parameters. The usual
strategy then is to complete the data set that was gathered
to study the pulsations with single measurements that are
scattered in time and that should allow a determination
of the orbital parameters. Once the latter are known, the
effect of the binary motion can be subtracted from the
data to start a study of the pulsational behaviour.
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Well-known examples of pulsating stars that have
been monitored extensively with the aim to derive the
pulsational parameters and that were known or turn
out to be members of a binary are σ Sco (Levee 1952;
Mathias et al. 1991), εPer (Smith et al. 1987; Gies &
Kullavanijaya 1988), λSco (Lomb & Shobbrook 1975; De
Mey et al. 1997), δ Sco (Telting & Schrijvers 1997), αVir
(Smith 1985a,b), θ2 Tau (Kennelly et al. 1996); θTuc (De
Mey et al. 1998). For most of these cases, the pulsational
analysis was or still is limited due to the lack of accurate
orbital parameters. On the other hand, more and more
binaries turn out to have a variable component, while the
orbital parameters were derived assuming that both com-
ponents are constant stars. Examples of the latter situa-
tion are found in the case of ηOri (Waelkens & Lampens
1988; De Mey et al. 1996), and are presented for V 436 Per
by Harmanec et al. (1997) and for β Sco A by Holmgren
et al. (1997). The latter two stars are targets of the so-
called SEFONO project introduced by Harmanec et al.
(1997). This project concerns a search for forced oscilla-
tions in close binaries by means of a search for line-profile
variability in one of the components. It is to be expected
that more pulsating stars in well-known binaries will soon
be encountered in connection with this project. Indeed,
in many of the target stars line-profile variability is con-
firmed or suspected (Harmanec, private communication).
The question then is how these variable line profiles affect
the determination of the orbital parameters, since the lat-
ter have been derived before the intrinsic variability was
known.

In this paper, we focus on the determination of the
orbital parameters in the case that one part of the radial-
velocity data set consists of numerous observations that
are concentrated on a few intrinsic variability cycles, while
the other part of the data are single observations taken at
random during subsequent variability cycles. The aim is
to give each radial-velocity measurement a weight accord-
ing to its ability to predict the radial velocity due to the
binary motion. It is clear that the data of a fully covered
pulsation cycle result in a much better predictor of the
binary radial velocity than the scattered data points. We
show how one can combine a single radial-velocity mea-
surement with the fully covered cycles to give a better
prediction of the radial velocity due to the binary motion.
In Sect. 2, we describe the statistical methodology to de-
rive the predictions of the binary radial-velocity and its
standard error. A simulation study is performed to study
the accuracy of the method. This is described in Sect. 3.
The standard errors of the predictors of the binary radial
velocity are then used as weights in existing methods to
derive the orbital parameters. Application to the βCep
stars βCru and κ Sco and to the star εPer are given in
Sect. 4. Finally, we end with some concluding remarks in
Sect. 5.

2. Statistical methodology

Denote the radial velocity (RV) at time t, measured at
wavelength λ by vtλ and the true underlying RV by vt.
Further, let β0 be the average RV. A two-stage statistical
model is then

vtλj = vt + εtλj , (1)

vt = β0 + f(t|γ) + a(t), (2)

(j = 1, . . . , n), where εtλj is a normally distributed er-
ror term with variance σ2

vt , due to measurement error and
wavelength calibration, f(t|γ) describes the orbital mo-
tion where γ groups the orbital parameters, and a(t) is a
periodic fluctuation of vt due to the pulsation of the star.
A general expression for a(t) is

a(t) =
K∑
k=1

αk sin(ωkt+ φk). (3)

Here, αk, ωk, and φk are the amplitude, the frequency,
and the phase of the radial velocity due to the kth pulsa-
tion mode. It is assumed that the frequency of f(t|γ) is
much smaller than the pulsation frequencies ωk. This as-
sumption ensures that it is reasonable to consider f(t|γ)
constant during a time period within which the sinusoidal
terms complete their cycles. Clearly, Eqs. (1) and (2) can
be combined into a single one:

vtλj = β0 + f(t|γ) + a(t) + εtλj . (4)

When solely the estimation of vt for fixed t is of interest, it
is sufficient to obtain a number of replications at different
wavelengths λ1, . . . , λn, whereafter they are averaged to
yield vt. The variance is equal to

σ2
vt

=
1

n− 1

n∑
j=1

(vtλj − vt)
2. (5)

Now, vt is an unbiased estimator for vt since the expecta-
tion of εtλ is assumed to be zero. Its standard deviation
is estimated by replacing vt in (5) with vt, and taking
the square root. In order to obtain the standard error we
divide this expression further by n.

Moreover, vt is unbiased for the orbital motion β(t) =
β0 + f(t|γ) since in addition a(t) is zero on average. In
contrast, the variance estimators are different in both sit-
uations since σ2

vt
fails to acknowledge pulsational variabil-

ity. Indeed, σ2
vt is the variance of vtλ around vt, while we

are now interested in the spread of vtλ around β(t).

Since the pulsational variability and the error term εtλ
are statistically independent, Eq. (4) yields

σ2
β(t) = E[(vtλ − β(t))2] (6)

= var[a(t)] + var(εtλ)

= var[a(t)] + σ2
vt (7)

= var[a(t)] +
1

n− 1

n∑
j=1

(vtλj − vt)
2. (8)
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When interest lies in the accuracy of the estimator β̂(t) =
vt one should compute

var(β̂(t)) = E[(vt − β(t))2]

= var

 1

n

n∑
j=1

[β(t) + a(t) + εtλj ]− β(t)


= var[a(t)] +

1

n
σ2
vt . (9)

These variances will be used as weights for the determi-
nation of the unknown orbital parameters.

Available data can consist of both full pulsation cy-
cles as well as measurements at a single time t (but at n
different wavelengths λj). In the second case, the second
term in (9) is straightforward to evaluate but the first one
is not. Indeed, even when we can assume that β(t) can be
considered constant during a pulsation cycle, a(t) is gen-
erally non-zero. Unfortunately, measurements at a single
t provide no information about the discrepancy between
the two. In order to overcome this problem, we will pro-
pose a method to determine the first variance component
from external information.

In the case of a monoperiodic pulsation, K = 1 in
(3). When more than one sine term is present, it is often
reasonable to assume that the function a(t) can be ap-
proximated by a single sine function during one night, but
that different approximations would be necessary for dif-
ferent nights. In other words, we will assume that the sinu-
soidal amplitude α is constant during one night, but fluc-
tuates in a complicated fashion over longer periods of time.
To model this, we assume that the amplitudes are drawn
randomly from a population of amplitudes with mean µ
and variance τ2. This implies that, if several values for α
have been obtained, α1, . . . , αm say, one can estimate the
average µ, µ say, as well as the variance

τ2 =
1

m− 1

m∑
`=1

(α` − µ)2.

These results can be used to obtain the variance of a(t).
Now, a(t) is a sinusoidal function of t, however with vari-
able amplitude α. To account for this extra source of vari-
ation, we use a fundamental result in mathematical statis-
tics (Bickel & Doksum 1977, p. 36):

var(a) = var[E(a|α)] +E[var(a|α)], (10)

where E(a|α) is the expectation of a(t), given a value of α
and similarly var(a|α) is the conditional variance of a ran-
dom variable. The unconditional counterparts are denoted
by E(.) and var(.). Now, assuming time t is uniformly dis-
tributed within a pulsation cycle [0, 2π/ω], the conditional
mean of a(t), given an amplitude α is

E(a|α) =
ω

2π

∫ 2π/ω

0

α sin[ω(t+ φ)]dt = 0

whence the first term in (10) cancels. Secondly, the
conditional variance of a(t), given an amplitude α is

Var(a|α) =
ω

2π

∫ 2π/ω

0

α2 sin2[ω(t+ φ)]dt =
α2

2

of which the mean is

E[var(a|α)] = E

(
α2

2

)
=

1

2
E(α)2 +

1

2
Var(α)

=
1

2
µ2 +

1

2
τ2. (11)

Substituting (11) into (10) leads to the following variance
formula for the estimated β:

var(β̂(t)) =
1

2
µ2 +

1

2
τ2 +

1

n
σ2
vt , (12)

which is estimated by plugging in estimated values for µ,
τ2, and σ2

vt . It is instructive to contrast this quantity with
the variance of a single measurement vtλ about the average
RV β(t):

var(vtλ) =
1

2
µ2 +

1

2
τ2 + σ2

vt
. (13)

When the number n of measurements vtλk (k = 1, . . . , n)
increases, the determination of vt is done with increasing
precision and the third term in (12) approaches zero. In
contrast, the intrinsic source of uncertainty, due to the
sinusoidal fluctuation, cannot be circumvented.

Note that, for a star which is monoperiodic, K = 1 and
hence the same amplitude will be found during each obser-
vational period. Hence, τ2 ≡ 0. In practice, one might still
find a small but non-zero value for τ2 since the amplitudes
will be determined with measurement error.

3. Simulation study

The goal of this simulation study is to assess the quality
of the approximation under various orbital and pulsation
models. We consider a simplified model with at most two
pulsational modes:

vtλ = β(t) + α1 sin(ω1t+ φ1) + α2 sin(ω2t+ φ2) + εtλ. (14)

We performed four small simulation runs. Each time a
beat period is covered with a grid of equally spaced points
and for each point (14) is calculated, where the error
term εtλ is generated from a standard normal distribution.
Then, we slide a window through the beat period and for
the set of observations within a window, a sinusoidal ap-
proximation is calculated. From this approximation, the
amplitude is retained. From these amplitudes, µ and τ2

can be estimated and hence our proposed expression for
the standard deviation (13) can be computed. The pur-
pose of this study is to compare this with the “correct”
value, which is determined as the sample standard devia-
tion of vtλ − β(t) in (14). Rewrite ωi = 2π/Pi, where Pi
is the period in days. Apart from the parameters in (14)
we need to specify the number N of equally spaced times
t under consideration. In addition, the number of replica-
tions n at each time needs to be specified. The settings
are displayed in Table 1. All phases are chosen φ1 ≡ 0.
Once we can conclude that the results are acceptable, it
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Table 1. Simulation settings

Run N n β(t) (km s−1) α1 (km s−1) P1 (days) α2 (km s−1) P2 (days)

1 104 2; 5; 10; 20 0 10 0.2 0 -

2 105 2; 5; 10; 20 α0 sin(ω0t)
1 10 0.2 0 -

3 104 20 0 20 0.2; 0.28; 0.4; 1 20 0.2

4 104 20 0 20 0.28 2; 5; 15; 20 0.2

1: Here, α0 = 50 (km s−1) and d0 = 5; 50; 100 (days).

follows that (12) can be trusted since the only difference
between (12) and (13) is that (12) further corrects for the
fact that several replicates are taken at time t. In the sim-
ulation settings considered here, the discrepancy between
(13) and (12) is of the order of 0.5% of (13).

In the first and the second simulation, there is only one
pulsational mode and therefore the observed amplitude is
constant over time, implying that τ2 ≡ 0. The second
simulation allows for a non-constant β(t) which, for sim-
plicity, is assumed to be of sinusoidal form as well. In order
to adequately cover the rapidly varying wave throughout
the beat period, the number of times N was increased by
a factor 10. In both simulations, the true standard devi-
ation is about 7.14 km s−1. We observe a relative error
between (13) and the true value smaller than 0.23% in
the first simulation and smaller than 0.15% in the second
simulation. This confirms the correctness of the formula
(13).

The third simulation studies the particular case of two
pulsational modes with α1 = α2 = α, implying that

α sin(ω1t) + α sin(ω2t) = α(t) sin(ωt)

with ω the average of ω1 and ω2 and

α(t) = 2α cos

(
ω1 − ω2

2
t

)
. (15)

Therefore, (15) can be used to determine µ2 + τ2. The
true standard deviations range between 20 km s−1 and
30 km s−1 and the largest discrepancy between our for-
mula and the correct value is 0.17%.

In practice, formula (15) will not be available to de-
termine the statistical properties of the varying ampli-
tude. Rather, it must be estimated from a set of data.
This is classically done using either Fourier transforms or
minimization in the least squares sense (Bloomfield 1976)
which is a special case of a statistical optimization method
known as profile likelihood (Welsh 1996). We used the sec-
ond method in the fourth simulation, which also enables
us to cover the situation α1 6= α2. Practically, we fitted a
function

δ + α sin(ωt+ φ)

to a window of the data generated under one of the set-
tings of the fourth study. The window consisted either of
100 or of 200 successive points (out of 1000). Windows
were then shifted with increments of 10, giving us 90 or
80 different values. In some regions, and for amplitudes

Table 2. Results for simulation study 4

var(vtλ)
α2 window trimming simul. theor. rel. err.

2 100 0% 14.26 14.36 0.70
200 0% 14.24 14.07 −1.21

5 100 0% 14.60 16.88 15.64
200 0% 14.60 14.26 −2.37

15 100 13% 17.70 17.89 1.05
200 12% 17.70 17.58 −0.66

20 100 9% 20.02 20.22 0.98
200 15% 20.02 18.71 −6.56

that are either equal or similar (α2 = 15, 20), the fit was
difficult and yielded implausible values for α. Therefore,
we applied trimming, i.e., we discarded all values α larger
than 50. The results are presented in Table 2. Observe
that there is some difficulty to recover the correct simu-
lated values when α1 = 20 km s−1 and α2 lie fairly close
to each other. In those cases, some trimming was neces-
sary. In addition, there appears to be some impact from
the choice of window.

4. Application to three stars

We apply our method to three binaries that contain an in-
trinsically variable star fulfilling the condition of having an
orbital period much longer than the pulsational period(s).
We chose the examples in such a way as to illustrate that
the inclusion of the weights can lead to negligible, notice-
able, and crucial improvements of the determination of
the orbital parameters. The applications show that our
method leads to solutions that are at least as accurate as
those found without assigning weights.

The code that we used for the determination of the
best orbital parameters was first published by Bertiau
& Grobben (1969). It is based on the Lehmann-Filhés
method and allows that weights are given to each of the
data points. The period can be fixed as well as variable.

4.1. εPer

The star εPer is the primary of an eccentric binary with
a period of approximately two weeks. The star is also
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Fig. 1. Top panel: the orbital radial velocity of εPer found by
means of the data taken for De Cat et al. (in preparation). The
error bars represent the standard errors. Lower panel: the orbit
as determined by De Cat et al. by considering all the data of
the star

known for its strong and complicated line-profile varia-
tions (Smith et al. 1987; Gies & Kullavanijaya 1988) on
a time-scale of hours. It is not yet clear how many and
what kind of pulsation modes are active in the star, but
high-degree modes are surely involved.

De Cat et al. (in preparation) have recently obtained
an extensive set of high-resolution profiles that span the
complete orbital period with the aim to study the orbital
motion, the pulsation of the primary, and also the coupling
between the two. We refer to their study for further details
but use their radial-velocity data of the λλ 4553 Å line of
εPer to determine the orbital periods with our method.

The data consist of 11 nights for which the pulsational
behaviour is well-covered and 3 additional nights during
which the weather conditions were poor and only a few
spectra were obtained. We determined the standard error
(s.e.) of these latter spectra by means of the method out-
lined above, i.e. by application of formula (12). To achieve

Table 3. Orbital parameters for εPer found by the tradi-
tional approach and based on our method that includes the
assignment of weights. The data are taken from De Cat et al.
(in preparation)

Element Without weights With weights

P (days) 13.43 ± 0.07 13.4± 0.1
vγ (km s−1) 14.0± 0.2 14.0± 0.1
K (km s−1) 15.0± 0.2 15.0± 0.2
E0 (HJD) 2450384.52 ± 0.02 2450384.55 ± 0.04

e 0.494 ± 0.008 0.49 ± 0.01
ω (degrees) 113± 1 115± 1

a1 sin i (a.u.) 0.01615 0.01610
f(M)(M�) 0.00312 0.00312

this, each of the radial-velocity curves for the fully covered
nights was fitted with a sine after having determined the
best frequency per night for such a fit with a period-search
algorithm (PDM, Stellingwerf 1978). From these fits we
derived the average radial velocity of that night with its
s.e. and the amplitude. The latter is used in the determi-
nation of the s.e. of the data of the uncovered nights.

The orbital solution that we find is in very good agree-
ment with the solution found by De Cat et al. (see Fig. 1
and Table 3). In fact, all orbital parameters agree within
their s.e. We refer to De Cat et al. for a full description of
the analysis of the complete data set.

This example shows that adding points of poorly cov-
ered nights to well-determined nightly averages over a pul-
sation cycle leads to the same accuracy of the orbital pa-
rameters if one assigns a proper weight to the scattered
data points. In the example of εPer there is no problem
to determine the solution without assigning weights be-
cause the data nicely cover the complete orbital cycle and
a couple of additional nights provide little extra informa-
tion. When the latter is not the case our method becomes
particularly helpful (see the last example).

4.2. κSco

The βCep star κ Sco was monitored as part of a system-
atic spectroscopic study of pulsating stars in multiple sys-
tems (see De Mey 1997; Aerts et al. 1998b). It consists
of a βCep-type primary and a yet unknown secondary.
This object has a pulsational behaviour that is similar
to the one of the multiple βCep star λSco and was ob-
served during the same observing runs that were devoted
to both stars (see De Mey et al. 1997, for the results on
λSco). The data set consists of 9 fully covered nights and
78 scattered data points. We refer to De Mey (1997) for a
full description of the data set.

Two pulsational frequencies are known in the litera-
ture for κ Sco and we fitted the fully covered nights with
a sine fit for the main frequency 5.004 c/d (Lomb &
Shobbrook 1975). We do not find different results than
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Fig. 2. The orbital radial velocity of the βCep star κSco. The data are taken from De Mey (1997). The symbol ◦ denotes the
scattered data points while 5 stands for the average radial velocity in the case of a fully covered night. The full line denotes
the orbital solution determined by considering all the radial-velocity data without taking into account weights while the dotted
line is the orbital solution found by our proposed method

Table 4. Orbital parameters for κSco found by the tradi-
tional approach and based on our method that includes the
assignment of weights

Element Without weights With weights

P (days) 195.866 ± 0.010 195.858 ± 0.007
vγ (km s−1) −1.30 ± 0.17 −1.45 ± 0.15
K (km s−1) 47.96 ± 0.35 47.48 ± 0.28
E0 (HJD) 2442147.79 ± 0.55 2440777.41 ± 0.43

e 0.477 ± 0.005 0.478 ± 0.005
ω (degrees) 90.25 ± 0.79 91.14 ± 0.69

a1 sin i (a.u.) 0.759 0.751
f(M)(M�) 1.520 1.472

the ones listed below by considering the second frequency
given by Lomb & Shobbrook, nor when we first search
for the best frequency per night and make a fit with this
frequency.

De Mey (1997) determined the orbital period from
the complete radial-velocity data set with the PDM and
CLEAN methods and found 195.77 days. She used this
fixed period to search for the other orbital parameters.
We refer to her work for the results.

At first, we used the same data set as De Mey (1997)
to search for the orbital parameters in the traditional way
without fixing the orbital period. This leads to a period of
195.87 ± 0.01 days and slightly different orbital param-

eters as found by De Mey (1997). We refer to the second
column of Table 4 for the values of the other orbital pa-
rameters. The rms of this solution is 2.38 km s−1 while
the orbit given by De Mey (1997) corresponds to an rms
of 2.44 km s−1. We therefore take our solution given in
Table 4 and compare it with the results obtained with the
approach outlined in Sect. 2. The results of this compari-
son are given in Table 4 and are shown in Fig. 2. It can be
noted from the figure that the solution found by means of
our new approach gives a slightly better fit to the data and
results in orbital parameters with substantially smaller
standard errors.

For this example, the introduction of weights is less
crucial for the point estimates than for the standard er-
rors. The reason is that we were able to extend our initial
data set with many scattered follow-up data that were ob-
tained to determine the orbit. If the number of scattered
points is sufficiently high and well-spread, they will not so
much change the average, but may affect precision estima-
tion. Moreover, this star has an orbital velocity amplitude
much larger than the amplitude of the pulsation velocity.
The last example shows that, when these two conditions
do not hold, it can be essential to include weights in a
proper way.
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Table 5. Orbital parameters for βCru based on our method
that includes the assignment of weights

Element Without weights With weights

P (days) – 1828.0 ± 2.5
vγ (km s−1) – 10.3 ± 0.2
K (km s−1) – 5.9 ± 0.8
E0 (HJD) – 2449879 ± 38

e – 0.38 ± 0.09
ω (degrees) – 293 ± 9

a1 sin i (a.u.) – 0.91
f(M)(M�) – 0.030

4.3. β Cru

Finally, the βCep star βCru is considered. The line-profile
variations of this star were recently studied very thor-
oughly by Aerts et al. (1998a), who were for the first time
able to determine the orbital parameters of this binary.
Aerts et al. have gathered over 1000 spectra for βCru,
but their time-spread is very poor from a point of view
of determining the orbital parameters (only a few nights
with each some 50− 250 spectra were obtained).

The application of our method to the data presented
by Aerts et al. (1998a) illustrates that assigning weights as
we propose here can make the difference between succeed-
ing and failing to determine the orbital parameters in the
case that the time spread of the data is very limited with
respect to the orbital period. Indeed, Aerts et al. (1998a)
failed to find a suitable orbital solution for β Cru before
the application of our method. The reason is that the few
follow-up measurements that were gathered with the spe-
cific aim to study the orbital motion were almost neglected
in the calculation of the orbit compared to the more than
1000 spectra obtained for the study of the pulsational be-
haviour. Moreover, βCru is an example in which the am-
plitude of the orbital motion is comparable to the one of
the pulsational velocity. In such a situation, it is crucial
to substitute fully covered nights by a single data point
and add this measurement to the follow-up data, each of
them with a proper weight. In fact, the development of
our method originates from the purpose to determine an
orbital solution for the complicated case of βCru from the
data presented by Aerts et al. (1998a). We list the solution
for the orbit of β Cru in Table 5 and refer to Aerts et al.
(1998a) for further details of this application.

5. Concluding remarks

We have presented a new approach to determine the or-
bital parameters of a binary in the case that one of the
components is an intrinsically variable star. The method is
applicable when the orbital period is considerably longer
than the period(s) of the intrinsic variability. Our ap-
proach turns out to be very useful when a limited amount

of data is available, i.e. when only a few nights of exten-
sive data, that cover the intrinsic variability cycle, and a
number of data points scattered throughout the orbital
phase have been obtained. Such a situation typically oc-
curs when the intrinsic variable target star of an observ-
ing run that covers the pulsational period turns out to
be the component of an unknown binary. It is then often
difficult to extend the data set in such a way that the
orbital solution can be found without any problem. The
method is also helpful when the observing run extends
over the complete orbital period but when some nights are
badly covered because of instrumental problems or poor
atmospheric conditions.

Imbert (1987, 1994) previously suggested a method
that takes into account the intrinsic variability of Cepheids
in binaries when determining the orbital parameters. He
achieves this by describing the pulsational radial-velocity
variations by an artificial Keplerian orbit. This method
only works well when the following conditions hold: the
pulsation is monoperiodic, the pulsation period is well-
known, and the pulsation cycles are well covered with
data. It is therefore very restricted compared to our
method and not applicable to most non-radial pulsators.
Moreover, it assumes an artificial motion while we make
use of a physically justified model. Finally, and most
importantly, all observations are treated with equal im-
portance in his method, contrary to our algorithm. The
strength of our method is that it allows to use mea-
surements of both badly and well covered cycles in a
statistically justified way.

It is to be expected that the algorithm proposed here
will be used more often in the near future now that it turns
out that many pulsating stars belong to a multiple system
(see e.g. Aerts et al. 1998b) and that known binaries turn
out to have at least one variable component (Harmanec
et al. 1997), the latter’s intrinsic variations being neglected
in the determination of the orbital solution so far.
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