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Abstract. This paper is one of a series based on published
values of [Fe/H] for late-type evolved stars. Only values of
[Fe/H] from high-dispersion spectroscopy or related tech-
niques are used. The narrative in this paper begins at a
point where mean values of [Fe/H] have been derived for ε
Vir, α Boo, β Gem, and the Hyades giants. By using these
stars as standard stars when necessary, a zero-point data
base is assembled. This data base is then expanded into
its final version by correcting and adding additional data
in a step-by-step process. As that process proceeds, data
comparisons are used to establish rms errors. Derived rms
errors per datum are found to be about 0.10 − 0.12 dex,
and they appear to be too large to be explained by line-
to-line scatter and temperature effects.
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1. Introduction

Published values of [Fe/H] are now available for more
than 1000 evolved G and K stars. If those data are to
be used successfully, two basic problems must be solved:
1) the data must be accessible, and 2) their quality must
be well understood. The first of these problems has been
addressed by a well-known series of catalogs by Cayrel
de Strobel and her associates (see, for example, Cayrel
de Strobel et al. 1997). For the second problem, however,
there is no solution that is generally accepted.

One part of an acceptable solution would be a reli-
able zero point. As Griffin & Holweger (1989) have noted,
it is not safe to assume that published values of [Fe/H]
are already on a uniform zero point. Another part of an
acceptable solution would be a reliable set of accidental
errors. Such errors must be known for any data set if the
data are to be used correctly. It is worth noting that val-
ues of [Fe/H] are almost always quoted without accidental

errors, and that there appears to be no consensus about
how large those errors should be.

This paper describes procedures for a) establishing
zero-point data, b) using those data to correct the zero
points of other results, and c) determining accidental er-
rors. These procedures are steps in the production of a
catalog containing averaged values of [Fe/H] and rms er-
rors. The stars listed in the catalog have spectral types of
G and K and luminosity classes ranging from II through
IV. An initial version of the catalog has been published by
Taylor (1991, hereafter T91). That version includes zero-
point and error analyses, but both must be revised because
many more data are now being included1.

In Sect. 2 below, there is a review of the way the new
analysis is prepared. Section 3 is concerned with the zero
point and the assembly of a final data base. In Sect. 4,
accidental errors are considered. In Sect. 5, a comparison
is made between the new results and counterparts in T91.
Section 6 concludes the paper with a brief review.

2. Preparation

Before applying the procedures to be described below, one
must decide which published data should be adopted and
what initial corrections to those data should be made.
Taylor (1998a, hereafter Paper I) has considered these is-
sues in some detail, so only a brief summary of his discus-
sion will be given here. For each datum to be included,
there is pertinent information that can be found only in
the source papers. Those papers are therefore consulted;
no attempt is made to rely on Cayrel de Strobel et al.
(1997) alone. Almost all the initial adjustments that are
then applied to the data are of the following kinds:

1. corrections to a single temperature scale,
2. non-LTE corrections, and

1 For a comparable catalog for late-type dwarfs, see Taylor
(1995).
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3. corrections to a preferred system of solar equivalent
widths.

These corrections are not all applied to every datum, but
are instead applied as required. (The rationale for adopt-
ing this list of corrections is discussed in Sects. 5 and 6 of
Taylor 1998a.)

Many published data are given relative to the Sun.
However, some data are given relative to other stars in-
stead. Zero-point stars that have often been used include
ε Vir, α Boo, β Gem, and the Hyades giants. Mean values
of [Fe/H] for these stars are given by Taylor (1998b, here-
after Paper II), who includes a detailed discussion of the
way those mean values are derived.

3. Correction to a uniform zero point

3.1. Data that define the zero point

The values of [Fe/H] for the zero-point stars may be
thought of as an initial zero-point data base. To ex-
pand that data base, a search is made for literature re-
sults whose zero points appear to be reasonably secure.
Acceptable results may be referred to the Sun directly or
through the zero-point stars listed above. Data for which
T91 has noted some special problem are set aside for the
moment. Data are also set aside if they have been derived
from the Holweger-Müller (1974) solar model and a stel-
lar model from a published grid. This combination will be
referred to here as a “non-uniform” grid of model atmo-
spheres. Data derived with non-uniform grids require cor-
rections ranging from −0.05 dex to +0.25 dex (see Sect. 6
of Paper I).

There appears to be a belief among some astronomers
that the history of [Fe/H] analysis has been dominated
by external zeroing (see Kuroczkin & Wisniewski 1977;
Twarog & Anthony-Twarog 1996)2. If this were true, pre-
sumably it would not be possible to find enough differen-
tial values of [Fe/H] to form an adequate zero-point data
base. In fact, the expanded version of that data base con-
tains results for 193 stars. Given the data for these stars,
one can produce a final set of averages that does not de-
pend on an adopted solar value of log (Fe/H).

Alternative ways of setting the zero point include use of
the Hyades as well as external zeroing. One could assume
that the Hyades giants and dwarfs have the same mean
value of [Fe/H] (again see Twarog & Anthony-Twarog
1996). By contrast, the approach adopted here is to test
this assumption instead of adopting it at the outset. It
is found that at 95% confidence, no difference as large
as 0.049 dex exists between the values of [Fe/H] for the
Hyades dwarfs and giants (see Sect. 7.6 of Paper II).

2 In this and companion papers, the term “external zeroing”
is applied if authors produce a program-star value of log (Fe/H)
and then subtract from it a solar value of log (Fe/H) that they
have not determined themselves.

3.2. Expanding the data base

The reader is now invited to inspect Table 1. The descrip-
tion given to this point has reached stage 2 of the anal-
ysis (see the second line of Table 1). Details about each
remaining data group considered here are given in the ta-
ble. Reasons for not including the added data in the initial
zero-point data base are given in footnotes to the table.
The data groups are sequenced so that larger groups are
added before smaller groups. This is done to make it as
likely as possible that “overlap” stars can be found in both
the zero-point data at a given stage and the data group
to be added at the next stage. If the number of overlap
stars is as large as possible, the correction to the added
data will be as precise as possible. An adequate number
of overlap stars is found at each step.

A search is now made for discrepant zero-point data.
A few such data are found and deleted. In addition, a
search is made for results that are added at stage 6 but
should be included earlier. An example of such a data set
is from Cottrell & Sneden (1986). Their results are ini-
tally included at stage 6 because they are based on a non-
uniform grid. However, a zero-point correction derived for
them turns out to be effectively zero, so they are included
at stage 2 instead. Once any required editing is done, the
analysis is repeated, and it is iterated until no further
editing is necessary.

As each part of the analysis beyond stage 1 is per-
formed, a number of values of [Fe/H] for the Paper II
zero-point stars are encountered. Those results have not
been used to calculate the mean values of [Fe/H] given in
Paper II for the zero-point stars. As a result, one might
conceivably find a discrepancy that could signal that the
Paper II mean values should be modified. Reassuringly,
no discrepancy as large as 2σ is found.

3.3. Special correction techniques

Sometimes data require more than a simple zero-point ad-
justment before being added to the data base. As noted
in Table 1, four additional correction algorithms are re-
quired.

1) U − B corrections. Suppose that values of [Fe/H]
from a given paper have a systematic error that varies with
temperature. If the cause is continuum misplacement, the
error will increase if temperature decreases or if metallic-
ity increases. By using a parameter that does the same
things, one can correct for the error. U − B fits these re-
quirements, and since it also has a large dynamic range,
it should be a good choice of correction parameter. The
adopted correction equation then has the following form:

F = F (uncorrected) + S(U −B) + Z, (1)

with F ≡ [Fe/H] and S and Z being constants.
This technique can be tested by applying it to the

results of Gratton et al. (1982). Those authors derived
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Table 1. Grouping the input values of [Fe/H]

Kind of Included Cumulative
Data group correctiona at stage no. of stars

Standard-star data None 1 7

Zero-point data for stars that Standard-star 2 193c

are not standard stars (sometimes)b

Photometric datad Zero-point, 3 835

scaled

McWilliam 1990e Zero-point 3 835

Brown et al. 1989f B − V 4 1086

Luck and collaboratorsg Zero-point 5 1102

Special-analysis datah U −B, θ, 6 1118
zero-point

a Corrections given in papers themselves are not considered here. Only corrections derived by comparing data from different
papers are listed.
b When necessary, data are referred to the Sun through the Paper II standard stars.
c This number includes only HD stars, since only data for such stars are used to rezero results in subsequent steps in the analysis.
d From Williams 1971, 1972 and Gustafsson et al. 1974. No lower limits from Williams 1972 are used. The Williams data are
re-scaled and corrected to the Gustafsson et al. zero point by using Eq. (1). T91 found that an overall zero-point correction for
the collected photometric data was required.
e These data are based on a non-uniform grid of model atmospheres. T91 found that a zero-point correction was required. Before
averages are formed, rms errors are set to 0.07 dex if they are less than 0.07 dex.
f T91 found that a B − V -based correction was required.
g From Luck 1991, Luck & Wepfer 1995, and Luck & Challener 1995. These data are based on a non-uniform grid of model
atmospheres. Results using spectroscopic values of log g are adopted.
h Literature sources for these data will be given in a subsequent paper in this series.

high-dispersion values of [Fe/H] from the blue-violet spec-
tral region. They give convincing evidence that their re-
sults suffer from continuum-placement error. The tech-
nique described above detects the results of this error at
a confidence level exceeding 99.99%. (For more informa-
tion about this test, see T91, Sect. 2.6, paragraphs 1, 2,
and 4.)

2) B − V corrections. These corrections are applied
to data from Brown et al. (1989), using a counterpart to
Eq. (1). The Brown et al. equivalent widths were mea-
sured to the red of 6600 Å, so they are unlikely to suffer
from continuum misplacement. It seems more likely that
in this case, the systematic error depends on tempera-
ture alone. Ideally, one would use some version of R − I
or a similar low-blanketing color index in the correction
equation. B − V is chosen instead because it is readily
available. The resulting correction equation appears to be
quite adequate. (See T91, Sect. 3, entry for Brown et al.)

3) Corrections based on θ ≡ 5040/Teff. These correc-
tions are applied to the data of Začs (1994). Values of θ
derived by Začs are the only convenient data on which to
base the corrections. Again, the correction equation is a
counterpart to Eq. (1).

4) Rescaling. Spectrum-synthesis results given by
Williams (1971, 1972) are included in the analysis. Those

results are known to suffer from a scale-factor error. The
adopted procedure for correcting that error is to transform
the Williams data so that they correspond to spectrum-
synthesis results from Gustafsson et al. (1974). The cor-
rection equation applied here is

F = 0.691FW − 0.001, (2)

with F now representing the data of Gustafsson et al.
and FW denoting the Williams data. No rescaling of the
combined Williams and Gustafsson et al. data seems to
be necessary. (For further discussion of this problem, see
Sect. 2.5 and Appendix A of T91.)

It may be noted that when Eq. (1) and its counterparts
are derived, one must find out whether the resulting val-
ues of S differ significantly from zero. If they do not, it is
appropriate to assume that S = 0 and derive a zero-point
correction Z alone. To solve this problem, a least-squares
routine that returns rms errors for derived coefficients is
employed. The ratio of S to its derived error is then calcu-
lated. This ratio is the t statistic, and it may be used with
standard tables to find out whether S differs from zero
at 95% confidence or better. A similar procedure may be
used if S = 0 is assumed and one suspects that Z does
not differ significantly from zero.
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3.4. Data that are not added to the data base

Some published metallicities for evolved K stars are not
included in the data base. The number of such data is
not disturbingly large; one finds that even without them,
the final catalog includes results for 1118 stars. Data may
be set aside because of continuum-placement problems or
other good reasons to suspect that they suffer from sys-
tematic errors. Other reasons for setting data aside include
a lack of pertinent information about the analyses used to
produce them. A complete list of omitted data bases and
the reasons for omitting them will be given with the cat-
alog (see Taylor 1999).

4. Deriving and checking rms errors

4.1. The error analysis: An overview

The error analysis may be described by referring to the
stages of the zero-point analysis that are listed in Table 1.
The principal steps of the error analysis are as follows.

– At stages 1–3, derive or adopt interim errors.
– Between stages 3 and 4, test those errors by comparing

data bases.
– At stages 4–6, use further comparisons between data

bases to derive an rms error for each added data base.

The quantity determined in this error analysis is the rms
error per datum. The generic symbol σ0 will be used here
to refer to that quantity. Given values of σ0 and numbers
of contributing data, standard deviations of mean values
may be calculated and included in the final catalog.

The scatter that appears when data sets are compared
is regarded here as the prime source of information about
σ0. No use is made of tacit errors that are too small to
explain such scatter (see Sect. 7.7 of Paper II). In addition,
no assumption is made that σ0 is related to high-dispersion
analysis procedures. The reason for not making such an
assumption will be given in Sect. 4.6.

4.2. The error analysis: Stages 1–3

At stage 1, rms errors of means for the standard stars are
carried over from Table 5 of Paper II. At stage 2, it is
found that there are a number of zero-point stars with
more than one datum. From the scatter in the data for
those stars, a value of σ0 is calculated (see Appendix A).
The resulting value of σ0 is 0.103± 0.009 dex.

At stage 3, results added to the data base in-
clude photometric data and the McWilliam (1990) data
(see Table 1). McWilliam quotes rms errors for each of
his results. Those errors are adopted on an interim ba-
sis. For the photometric data, it is assumed that the ob-
served scatter around Eq. (2) is contributed equally by
the results of Gustafsson et al. (1974) and the rescaled
results of Williams (1971, 1972). The resulting value of σ0

is 0.097± 0.009 dex.

4.3. Testing the errors: The procedure

Note that there are now three sets of interim errors to
be tested. One set is the value of σ0 for the zero-point
data. The second set of errors is for the McWilliam data,
while the third set is the value of σ0 for the photomet-
ric data. To test those errors, a data-comparison algo-
rithm is used. The algorithm is derived mathematically in
Eqs. (B1) through (B44) of Appendix B of T91, so the
description of the algorithm given here will be limited to
a conceptual summary.

Let two sets of N data each (say, set A and set B) be
considered. Suppose that rms errors are known for set A,
but not for set B. Let an estimate be made for the set B
error, and let the N differences between data sets A and
B be calculated. If accidental error affects both data sets,
the N differences will scatter around some mean. Suppose
that one can account for that scatter by combining the
known errors for data set A and the estimated error for
data set B. One can then conclude that the estimate for
the latter error is correct.

This procedure can also be applied to the N residuals
from some general relation between data sets A and B.
Since the amount of scatter depends in some degree on
the adopted relation, it is good procedure to determine
the relation before settling on a final value for the set B
error. In practice, trial versions of Eq. (1) and its coun-
terparts are calculated. If S differs significantly from zero
(recall Sect. 3.3), the scatter around the equation is used
to obtain the set B error. If S does not differ significantly
from zero, the error algorithm is applied while a simple
zero-point offset between data sets A and B is derived.

4.4. Testing the errors: Results

Let the value of σ0 derived for data set B be referred to
as an “external” error. This name is applied because the
error is derived, in part, from data which are external to
data set B. “Internal” errors have been obtained for each
data set during stages 1–3. The task now at hand is to
compare internal and external values of σ0. A selection of
results from those comparisons is given in Table 2.

The first three lines of Table 2 imply, in brief, that if
one compares McWilliam (1990) and zero-point data and
then compares photometric and McWilliam data, the re-
sults are satisfactory. Note that this is true, in particular,
if McWilliam data with small internal errors are used. To
achieve closure, it is also necessary to compare photomet-
ric and zero-point data. Given the interim error for the
zero-point data, one hopes to recover the internal error for
the photometric data. What actually happens, however,
is that a difference of 2.5σ appears between the internal
and external photometric errors. (See the fourth line of
Table 2, especially the entry set off by asterisks).

To evaluate this difference, a test is made in which
the photometric data are compared to weighted means of
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Table 2. Comparison of internal and external rms errors

Error being Error assumed Range of No. of Internal External

testeda to be correcta McW errors usedb starsc value value

McW Zpt 0.04 − 0.14 85 0.103 0.091 ± 0.016
GKA/W McW 0.04 − 0.09 69 0.097± 0.009 0.128 ± 0.021
GKA/W McW 0.04 − 0.14 181 0.097± 0.009 0.095 ± 0.013
GKA/W Zpt ... 63 0.097± 0.009 ∗0.155 ± 0.020∗
GKA/W McW, Zpt 0.04 − 0.14 173d 0.097± 0.009 ∗0.126 ± 0.012∗

All numbers in Cols. 3, 5, and 6 are in dex.
a “McW” is McWilliam 1990, “Zpt” refers to the zero-point data, and “GKA/W” refers to Gustafsson et al. 1974 and
Williams 1971, 1972.

b “McW” is McWilliam 1990.
c This is the number of stars used in the comparison.
d No stars used to derive Eq. (2) are used in this test. As a result, the quoted internal and external results are from completely
independent determinations.

the McWilliam and zero-point data. The weights are val-
ues of σ−2

0 for the contributing data, and the means are
formed after the two sets of data are reduced to a common
zero point. This time, the difference between the external
and internal errors is less than 2σ (see the fifth line of
Table 2). The result in the fourth line of Table 2 is there-
fore regarded as a statistical fluctuation. In subsequent
stages of the analysis, the internal errors for stages 1 − 3
are adopted without change.

4.5. The error analysis: Stages 4–6

At stage 4 of the analysis, the data-comparison algorithm
is applied to derive a value of σ0 for the results of Brown
et al. (1989). Using again the terminology of Sect. 4.3, let
the Brown et al. data make up set B. For set A, an interim
set of weighted averages is used. Contributing data for the
averages are from stages 1–3 of the analysis. As before, the
weights are values of σ−2

0 . The weights are used to assign
rms errors to the set A averages. (The equations applied
here are Eqs. (C3) and (C5) of Appendix C of T91.)

At stage 5, the above procedure is repeated for the
“Luck et al.” data (from Luck 1991; Luck & Challener
1995; and Luck & Wepfer 1995). Interim averages from
stages 1–4 are employed, and the Luck et al. data are
first corrected for the way in which a model-atmosphere
grid was used to derive them (see Appendix B). At stage
6, interim averages from stages 1–5 are used. The data-
comparison algorithm is now applied to derive values of
σ0 for data sets requiring special error analyses (note again
the last line of Table 1). In a special preliminary reduction,
the data of Helfer & Wallerstein (1968) are tested at this
stage (see below).

For the Brown et al. and Luck et al. results, the derived
values of σ0 are 0.11 ± 0.01 dex and 0.12 ± 0.02 dex,
respectively. Note that those errors and the others given
so far are quite similar. The quoted error for the Luck

et al. data is for values of [Fe/H] which those authors ob-
tain while calculating spectroscopic values of log g. Luck
et al. also give values of [Fe/H] derived by using so-called
“physical” gravities. For those latter data, σ0 = 0.07±
0.02 dex, so their precision may be somewhat better than
that of their “spectroscopic” counterparts. Nevertheless,
the “spectroscopic” data are adopted when available.
(This procedure is a response to the problem posed by the
metallicity of µ Leo and will be discussed in a subsequent
paper.)

At stage 6, unusually large values of σ0 are obtained
for some data sets. Even if those data sets require no sys-
tematic corrections, they are excluded from the zero-point
data set. Identifying noisy data is another reason for iter-
ating the analysis (recall Sect. 3.2).

4.6. Accidental errors and analysis procedures

As noted above, no use is made here of errors inferred from
high-dispersion analysis procedures. In particular, such er-
rors are not substituted for errors derived from data scat-
ter. There is admittedly a certain surface plausibility in
assuming that there is a link between small errors and
reliable analysis procedures. However, it should be noted
that such a link may be urged on the basis of supposi-
tion or even outright bias. To forestall such problems, an
appeal to numerical demonstration is required.

To gain some insight into this issue, the data of Helfer
& Wallerstein (1968) have been tested. Those data are
from differential curve-of-growth (DCOG) analyses. The
shortcomings of principle of such analyses seem to be be-
yond reasonable doubt, judging from comments made by
Griffin (1969, 1975). It is of obvious interest to find out
whether those shortcomings lead to an inflated accidental
error.

In a test reduction, the Helfer-Wallerstein data were
held out of the analysis until stage 6. An error was
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Table 3. T91 and revised corrections

Data base Quantitya T91 Rederived

Photometric data Z −0.07± 0.02 −0.06± 0.02

McWilliam 1990b Z 0.04± 0.01 0.07± 0.01
Brown et al. 1989 S −0.59± 0.09 −0.60± 0.05
Brown et al. 1989 Z 0.57± 0.08 0.60± 0.06
Luck et al.c Z ... −0.05± 0.01

Luck et al.d Z ... −0.13± 0.01

All numbers in Cols. 3–4 are in dex.
a Symbols are defined in Eq. (1). If a value of S does not differ
significantly from 0, it is assumed to be ≡ 0 and is not quoted.
b The “T91” entry was derived by Taylor 1996.
c This entry is for data based on “spectroscopic” gravities.
d This entry is for data based on “physical” gravities.

then derived for those data by using the data-comparison
algorithm. The derived error for the Helfer-Wallerstein
data was found to be 0.126 ± 0.027 dex. Recall that for
the stage 2 zero-point data as a whole, σ0 = 0.103±
0.009 dex. Plainly the two values of σ0 are effectively the
same.

Model-atmosphere procedures are likely to resemble
each other more closely than any of them resemble DCOG
analysis. For this reason, the result just given suggests that
there should be no general correlation between error size
and type of model-atmosphere analysis. A correlation of
this sort may appear in specific instances; note that such
a correlation may have been found for the two kinds of
Luck et al. analysis (recall Sect. 4.5). However, it seems
clear that one should insist on numerical demonstration
in all cases before deciding that such a correlation exists.

5. Updating T91: The results of the new analysis

5.1. Zero points and scale factors

It is of interest to see how different the results of the new
analysis are from their T91 counterparts. Zero points and
scale factors will be considered first. A selection of values
of S and Z (recall Eq. (1)) is given in Table 3, with T91
results in the third column and new results in the fourth
column. Table 3 also contains the first values of Z derived
for the Luck et al. data.

From the Table 3 data that have T91 counterparts, one
gets the overall impression that little has changed. Note
especially the entries in the table for the photometric and
McWilliam data. Since those data are added at stage 3,
the tabular entries show how much the overall zero point
established at stage 2 has changed. Despite a marked in-
crease in the size of the data base, that change appears
to be no more than 0.01 − 0.02 dex. Apparently there is
good reason to hope that future changes will be no larger
than this.

5.2. The overall zero point: An estimate of accidental
error

To estimate the rms error of the overall zero point, one
may use the stage 2 results and either the photometric
or the McWilliam data. Z is known with better precision
for the McWilliam data, so those data will be used here
(note the first and second lines of Table 3). To three dec-
imal places, the rms error of Z for the McWilliam data is
0.014 dex. If the McWilliam data and the stage 2 data con-
tribute about equally to this error, then σ ∼ 0.010 dex for
the overall zero point. This result is essentially unchanged
from T91.

5.3. Values of σ0: Sizes and possible sources

For values of σ0, there is a greater change than the one
found for systematic effects. In T91, the “default error”
per datum is found to be 0.16 ± 0.02 dex. Typical
counterpart values obtained here are in the range 0.10−
0.12 dex. These smaller errors are obtained from a notice-
ably larger data base than was available for the T91 analy-
sis. There is therefore good reason to hope that the revised
errors are more reliable than the T91 errors. Testing of the
revised errors is planned as further data become available.

One would like to know whether the derived errors
can be explained by an appeal to obvious sources. Line-
to-line scatter is clearly one such source. Estimates of error
from this source can be derived from data in Table 7 of
Gratton & Sneden (1990). For photographic spectra, the
estimated error contribution is 0.06 dex. For Reticon and
CCD spectra, the corresponding number is 0.02 dex.

Errors in assigned temperatures also contribute to σ0.
To understand this error source, one should recall that σ0

has been derived by comparing data from various stars.
When such comparisons are made, systematic errors from
a temperature calibration should largely cancel out be-
cause they should be about the same for all stars. On the
other hand, if photometric indices are used to assign tem-
peratures (as they often are here), the errors introduced
by such indices will not cancel out because they vary ran-
domly from star to star. An estimated size for this second
kind of error is therefore required.

The error size may be obtained from the following
relation:

σ0,T = σθ|d[Fe/H]/dθ|. (3)

To obtain a specific result from this equation, a star in the
level 2 data base with Teff = 5000 K will be considered.
For such a star, |d[Fe/H]/dθ| is typically 3.3 (see Eq. (4) of
Taylor 1998a). A value of σθ may be obtained from errors
derived for photometric indices (see Table III of Taylor
et al. 1987 and Appendix B of Taylor 1996). For level 2
data, the mean value of σθ is about 0.009. The resulting
value of σ0,T is then 0.03 dex.
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If this error is added in quadrature to the line-scatter
errors, the results are about 0.07 dex for data from photo-
graphic plates and about 0.04 dex for data from Reticons
and CCDs. Recalling that the derived value of σ0 is about
0.10 dex for level 2 data, one can see at once that some
important error source is being missed. Identifying that
source turns out to be something of a problem. In princi-
ple, the missing error could be produced by inconsistencies
in the way that spectra for diverse program stars are re-
duced. This explanation is not very attractive because it
is hard to name a specific inconsistency that might plau-
sibly be causing the problem. Nevertheless, it might be
worthwhile to look into this possibility by exposing and
reducing a series of spectrograms for a given star.

6. Summary

The analysis described above is centered on data which
define a zero point. Enough of those data are found to al-
low the analysis to proceed. Data that are not zero-point
data are corrected and added to the overall data base in
a step-by-step process. Only an acceptably small number
of data cannot be included in this process. As it proceeds,
values of σ0 are determined by data comparisons. For the
most part, the resulting values of σ0 lie between 0.10 and
0.12 dex. These errors appear to be too large to be ex-
plained by line-to-line scatter and temperature effects.
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Appendix A: The rms error for the zero-point data

Suppose that for star i, there are ni > 1 zero-point data.
Here one uses a standard expression to calculate

vi = (ni − 1)−1
ni∑
j=1

(fj − 〈fj〉)
2. (A1)

fj is the jth value of [Fe/H] for star i, and the variance
vi of the values of [Fe/H] is the square of the standard
deviation per datum.

Since vi is calculated from a finite data set, vi itself
has a finite variance. If the fj are normally distributed,
the variance of vi is inversely proportional to νi ≡ ni − 1
(see Keeping 1962, Eq. [5.11.14], p. 110). Inverse-variance
weighting will then yield a weight which is proportional
to νi, so the expression for the mean variance becomes

v =
N∑
i=1

νivi

/
N∑
i=1

νi, (A2)

with N being the total number of contributing stars. The
associated number of degrees of freedom is given by

ν0 =

Ni∑
i=1

ni −N. (A3)

In part, this analysis is described here because it does not
appear to be common knowledge that ni − 1 weighting
should be used in this context.

Appendix B: Interpolation corrections for the Luck
et al. data

If authors do not interpolate their model-atmosphere grids
to force equality between model and derived metallicities,
small corrections to the latter may be required. Because
Castro et al. (1996) discuss such corrections for the Luck
et al. results, those corrections receive special attention in
this analysis. Castro et al. point out that for the solar-
abundance model used by Luck et al., log ε(Fe) = 7.50
(see Bell et al. 1976). Since the solar abundance used
by Luck et al. is 7.67, the effective value of [Fe/H] for
their nominal solar model is −0.17 dex. For the purpose
at hand, this number is adopted as the zero point of the
Bell et al. grid.

Castro et al. also calculate a scale factor for the in-
terpolation correction. That scale factor is set aside here,
and a counterpart given by Luck et al. themselves is used
(see Table 7 of Luck & Challener 1995). The complete cor-
rection may be expressed as follows: if N is an integer and
(0.5N − 0.25) dex ≤ [Fe/H]LC95 < (0.5N + 0.25) dex,

[Fe/H](corr) = 1.12[Fe/H]LC95 + 0.02 + 0.06N. (B1)

This correction is applied before the zero-point adjust-
ments given in Table 3 are calculated. It may be noted
that to first order, the effect of the correction is a simple
change in zero-point adjustment.
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