Nine newly discovered bright low-redshift quasars from RASS

D.W. Xu1, J.Y. Wei1,2, X.Y. Dong1, and J.Y. Hu1,2

1 Beijing Astronomical Observatory, Chinese Academy of Sciences, Datun Rd., #20A, Chaoyang District, Beijing 100012, PR China
e-mail: dwxu@class1.bao.ac.cn
2 United Laboratory of Optical Astronomy, Chinese Academy of Sciences, PR China

Received May 19; accepted August 24, 1998

Abstract. By using the CCD detector and Cassegrain spectrograph of the 2.16 m telescope at Beijing Astronomical Observatory, we are carrying out optical identifications of the X-ray sources selected from the ROSAT All-Sky Survey Bright Source Catalogue. We present here the discovery of 9 bright low-redshift quasars.

Key words: quasars: general — surveys — X-rays: galaxies

1. Introduction

During the ROSAT All-Sky Survey (RASS) about 80 000 X-ray sources with a detection likelihood ≥ 10 were found (Voges 1992; Voges et al. 1994; Voges et al. 1996b, 1997), from which 18 811 sources were compiled in the ROSAT Bright Source Catalogue (RASS-BSC) (Voges et al. 1996a,b; Voges et al. 1997). Most of them are newly discovered X-ray sources and more than 65% of the objects were previously unknown (Brinkmann et al. 1995; Bade et al. 1998). The optical spectroscopic studies of these RASS sources are essential for understanding them more clearly. We are performing a program to identify unknown RASS sources at high galactic latitude ($|b| \geq 20^\circ$) in the northern hemisphere ($\delta \geq 3^\circ$) and whose likely optical counterparts have R magnitudes between 13.5 and 16.5. About 60 quasars were identified independently through low dispersion spectroscopic observations in 1996 and 1997 (Wei et al. 1996, 1997). In this paper we report on the discovery of 9 bright low-redshift quasars (hereafter BLRQs) with B magnitude equal to or less than 17.0.

In Sect. 2, the sample selection is introduced. The observations and results are presented in Sect. 3.
Fig. 1. Spectra of the new quasars
4. Optical counterparts with R magnitudes between 13.5 and 16.5, where R magnitude was derived from USNO-A1.0.

5. $\log C \geq -0.4 \ R + 4.9$, where C is the X-ray count rate of RASS source and R is the R magnitude of possible counterpart. The results of the EMSS (Stocke et al. 1991) have shown that different classes of X-ray sources represent different narrow ranges in the X-ray-to-optical flux ratios. These bounds mean the X-ray sources with Galactic and extragalactic counterparts can be separated at high confidence level prior to any optical spectroscopy (Maccacaro et al. 1988). However, X-ray flux is difficult to evaluate before optical identification. In spite of the absorption by the column density N_H of cold material X-ray count rate is roughly proportional to X-ray flux, so X-ray flux in the X-ray-to-optical flux ratio criterion can be replaced by X-ray count rate, i.e., $\log(f_X/f_O) \propto \log C + 0.4 \ R + \text{constant}$, where we use the R magnitude flux to represent the optical flux. According to our statistical analysis of known RASS-BSC X-ray sources, we found there is an apparent gap between Galactic stars and extragalactic objects. Emission line AGNs concentrate on the region: $\log C \geq -0.4 \ R + 4.9$. Thus choosing $\log C \geq -0.4 \ R + 4.9$ as preselecting AGNs criterion would be efficient. Details of the criterion construction have been described in Cao et al. (1998);

6. No association with objects in the Galactic and extragalactic catalogues compiled in the SIMBAD and NED database.

Table 3. Optical properties of the new quasars

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1RXS J071339.7+382043</td>
<td>07 13 40.30</td>
<td>38 20 39.7</td>
<td>9.6</td>
<td>14.8</td>
<td>16.0</td>
<td>0.123</td>
<td>-23.4</td>
<td>H____, FeII, H__, HeI, H__, [OII], [NeIII], [OIII]</td>
</tr>
<tr>
<td>1RXS J073308.7+455511</td>
<td>07 33 09.27</td>
<td>45 55 05.6</td>
<td>10.1</td>
<td>15.5</td>
<td>16.2</td>
<td>0.142</td>
<td>-23.5</td>
<td>H___, FeII, H__, HeI, H__, [OII], [NeIII], [OIII]</td>
</tr>
<tr>
<td>1RXS J092748.9+403838</td>
<td>09 27 49.07</td>
<td>40 38 31.7</td>
<td>6.8</td>
<td>16.2</td>
<td>16.4</td>
<td>0.423</td>
<td>-25.7</td>
<td>MgII, H__, H__, [OII], [OIII]</td>
</tr>
<tr>
<td>1RXS J101031.1+255959</td>
<td>10 10 30.55</td>
<td>25 59 48.7</td>
<td>13.2</td>
<td>16.3</td>
<td>16.7</td>
<td>0.512</td>
<td>-25.8</td>
<td>MgII, H__, H__, H__</td>
</tr>
<tr>
<td>1RXS J104111.5+282812</td>
<td>10 41 11.95</td>
<td>28 28 04.7</td>
<td>7.7</td>
<td>16.1</td>
<td>16.8</td>
<td>0.210</td>
<td>-23.8</td>
<td>H__, FeII, H__, HeI, H__, [NeIII], [OIII]</td>
</tr>
<tr>
<td>1RXS J111754.9+263413</td>
<td>11 17 54.33</td>
<td>26 34 16.4</td>
<td>9.2</td>
<td>16.1</td>
<td>16.9</td>
<td>0.422</td>
<td>-25.2</td>
<td>MgII, H__, H__, [OIII]</td>
</tr>
<tr>
<td>1RXS J120347.5+520748</td>
<td>12 03 47.71</td>
<td>52 07 49.5</td>
<td>3.5</td>
<td>16.0</td>
<td>16.8</td>
<td>0.177</td>
<td>-23.4</td>
<td>H__, H__, HeII, H__, H__, [NeV], [NeIII], [OIII]</td>
</tr>
<tr>
<td>1RXS J120423.7+433059</td>
<td>12 04 24.03</td>
<td>43 30 56.6</td>
<td>5.5</td>
<td>15.6</td>
<td>16.5</td>
<td>0.663</td>
<td>-26.6</td>
<td>MgII, H__, [OII]</td>
</tr>
<tr>
<td>1RXS J122542.3+205503</td>
<td>12 25 41.89</td>
<td>20 55 03.7</td>
<td>6.2</td>
<td>16.1</td>
<td>16.5</td>
<td>0.334</td>
<td>-25.1</td>
<td>H__, H__, [OIII]</td>
</tr>
</tbody>
</table>

3. Spectroscopic observations and results

The spectroscopic observations were made in several observing runs in 1996 and 1997 with the 2.16 m telescope of the United Laboratory of Optical Astronomy, Chinese Academy of Sciences at Xinglong Station, Beijing Astronomical Observatory (BAO). The spectra were obtained with the OMR spectrograph equipped with a Tektronix CCD (1024 × 1024 pixels with 24 microns per pixel) at a dispersion of 200 Å mm^{-1} or 400 Å mm^{-1}. The 400 Å mm^{-1} grating was not used if one believes Table 1. The spectral coverage was 3800 − 8200 Å. The journal of observations is given in Table 1.

The data reduction was performed by using the IRAF program package. The CCD reductions included bias subtraction, flatfield correction and cosmic-ray removal. The X-ray characteristics and optical properties of the 9 BLRQs are summarized in Tables 2 and 3, and their results of the EMSS (Stocke et al. 1991) have shown that different classes of X-ray sources represent different narrow ranges in the X-ray-to-optical flux ratios. These bounds mean the X-ray sources with Galactic and extragalactic counterparts can be separated at high confidence level prior to any optical spectroscopy (Maccacaro et al. 1988). However, X-ray flux is difficult to evaluate before optical identification. In spite of the absorption by the column density N_H of cold material X-ray count rate is roughly proportional to X-ray flux, so X-ray flux in the X-ray-to-optical flux ratio criterion can be replaced by X-ray count rate, i.e., $\log(f_X/f_O) \propto \log C + 0.4 \ R + \text{constant}$, where we use the R magnitude flux to represent the optical flux. According to our statistical analysis of known RASS-BSC X-ray sources, we found there is an apparent gap between Galactic stars and extragalactic objects. Emission line AGNs concentrate on the region: $\log C \geq -0.4 \ R + 4.9$. Thus choosing $\log C \geq -0.4 \ R + 4.9$ as preselecting AGNs criterion would be efficient. Details of the criterion construction have been described in Cao et al. (1998);

6. No association with objects in the Galactic and extragalactic catalogues compiled in the SIMBAD and NED database.

Table 3 were obtained from USNO-A1.0. We applied these coordinates to the Digitized Sky Survey\(^2\) and did not find any ambiguous identifications of the objects, so we do not give the finding charts of the 9 BLRQs. The average redshifts were usually determined from two or more emission lines. The \(B\) and \(R\) magnitudes were obtained from USNO-A1.0 and have an accuracy between 0.25 and 0.40 magnitudes depending on the declination (Monet et al. 1996). The absolute \(B\) magnitudes were calculated by the same formula used by Véron-Cetty & Véron (1996) under the assumption of \(H_0 = 50\,\text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1}\) and \(q_0 = 0\). The \(D_{\text{x-ops}}\) listed in Table 3 is the angular separation between the X-ray centroid and the optical counterpart in arcseconds.

Acknowledgements. Special thanks to Dr. Qiu Yulei and Dr. Jiang Biwei for their hard work of English revision of this paper. We are grateful to Miss Cao Li for her kindly help with data reduction. We also thank Mr. Yan Haojing for providing the extinction data of Xinglong Station. This work is partly supported by the Pandeng Project of the Chinese Scientific Committee and the Chinese National Natural Science Foundation.

References

Brinkmann W., Siebert J., Reich W., et al., 1995, A&AS 109, 147
Cao L., Wei J.Y., Hu J.Y., 1998 (to be submitted A&A)
Strom K.M., 1979, Kitt Peak National Observatory IIDS
Standard Star Manual
Véron-Cetty M.-P., Véron P., 1996, ESO Scientific Report,
No. 17
Voges W., 1992, in Proceedings of the ISY Conference “Space
Sciences”, ESA ISY-3, ESA Publications, p. 9
Voges W., Gruber R., Haberl F., et al., 1994, ROSAT NEWS
No. 392
Voges W., Boller Th., Dennerl K., et al., 1996a, MPE-Report
263, 637
Voges W., Aschenbach B., Boller Th., et al., 1996b, IAU Circ.
6420
Voges W., Aschenbach B., Boller Th., et al., 1997 (to be
submitted A&AS)
Colloquium 159, p. 425
17, 107
Yan H.J., 1995 (private communication)
