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Abstract. The introduction of surveys (e.g. Spacewatch,
OCA-DLR) dedicated to the discovery of asteroids and
other small bodies is likely to increase the number of
known objects to many times the current figure of roughly
30 000. Previous methods for determining collision prob-
abilities amongst these objects (e.g. those due to Öpik,
Wetherill, Greenberg and Kessler) all have idiosyncrasies
which make them inappropriate for analyses of interac-
tions between large numbers of solar system bodies. Here
we present an adaptation of the Wetherill and Greenberg
methods, which avoids approximations made by Öpik but
which remains accurate and fast enough in its implemen-
tation to allow the direct analysis of the collision proba-
bilities and impact velocities of thousands of potentially
colliding objects.

Key words: minor planets, asteroids — solar system:
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1. Introduction

The problem of working out collision rates between
solar-system bodies has many applications in theo-
ries concerning the long-term physical evolution of ob-
jects which make up the solar system. Collision rates
are of particular importance in the main asteroid belt
(Farinella & Davis 1992), where it has long been recog-
nized that collisions play a key role; also in the Edgeworth-
Kuiper belt (Farinella & Davis 1996), in meteoritic astron-
omy, and in all studies concerning the cratering history of
the terrestrial planets. Collision rates are also a key factor
in understanding the evolution of the zodiacal cloud and in
modelling the development of asteroidal surface regoliths.
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Algorithms for assessing collision probabilities are also
demanded in fields such as NEO studies, and where there
are suggestions that previous values of collision probabil-
ities in the main belt (Farinella & Davis 1992; Vedder
1996, 1998), based on the observed population of bodies
larger than 50 km, may not be representative of the colli-
sion probability for smaller bodies (Cellino et al. 1996).
Resolving the latter question requires a new computa-
tional effort based on a much larger sample extending to
include the small bodies.

One of the first to provide an analytic expression for
the collisional probability between a pair of orbits was
Öpik (1951). His approach has serious limitations (e.g.
one orbit must be circular), but it has been widely used
in the past and is still ideal as a quick estimator of col-
lision rates against the planets, whose orbits are roughly
circular. Unfortunately Öpik’s method, although elegant
and purely analytical, has singularities at the apsides (i.e.
when the perihelia or aphelia just touch the circular orbit)
and whenever the orbits are coplanar.

An improved technique by Wetherill (1967) allows
both orbits to be elliptical, and allows for an assumed
constant perihelion precession by assuming that the distri-
bution of the value of the true anomaly of one orbit at the
point of intersection with the other is uniform. This as-
sumption allows the probability function to be integrated
by Monte Carlo sampling, but for such low-dimensional
problems Monte Carlo integrations are relatively
inefficient.

Greenberg’s (1982) method (cf. Bottke & Greenberg
1993), which can be viewed as a variation of the Öpik-
Wetherill schemes, is more comprehensive that either of
the above, but the geometry unfortunately makes it diffi-
cult to implement. The algorithm which we describe below
is based on these methods, but uses different reference ge-
ometries in order to reduce programming complexity and
improve performance. Following Bottke et al. (1994), our
algorithm correctly weights the collision velocities between



438 S.P. Manley et al.: Collision probabilities between solar system bodies

any pair of particles, and hence provides a more accurate
determination of the frequency distribution of collision ve-
locities in any particular case.

Another method, implemented by Kessler (1981) and
Steel & Baggeley (1985), evaluates the probability den-
sity of the particles around their respective orbits using a
simple kinetic theory to determine the collision probabil-
ity. This method generally produces excellent results, but
is comparatively slow. The more basic “particle in a box”
methods make no allowance for the specific orbital geome-
tries of individual colliding particles, and while useful for
simulating large systems are comparatively inaccurate.

More recent innovations include those by Dell’Oro &
Paolicchi (1997) and Vedder (1996). The former authors
introduce the novel concept of estimating the collision
probability between a target and a large population of
field particles, by selecting only those orbits able to col-
lide with the target, and then adjusting the distribution
of such orbits to match the statistical properties of the
underlying ensemble. This has the advantage of focusing
attention solely on orbits which might collide with a given
target, allowing the investigation of different field pop-
ulations with little additional computational effort. By
contrast, Vedder (1996) develops a probabilistic method
based on the frequency distribution of close approaches
between elliptical orbits. Whereas this provides an inter-
esting alternative to other methods, avoiding singularities
associated with some methods and orbital geometries, it
is relatively computer intensive and not ideally suited as
a quick collision probability estimator.

All these methods assume that the collision probabil-
ity per unit time is sufficiently small that the interacting
particles fully sample the orbital phase space before any
collision can take place. However, some pairs of particles
may be restricted (e.g. by resonances) to certain regions of
phase space, whereas other pairs may undergo significant
evolution in elements (e.g. semi-major axis) which are as-
sumed in most methods to be constant or slowly varying.
The alternative approach, namely direct numerical inte-
gration of the relevant particles, in principle allows a very
good determination of the collision probability between
two objects, but is very computationally expensive. Such
an approach has been used, for example, by Yoshikawa
& Nakamura (1994), and the numerical integration ap-
proach has been used in different regimes by other authors
(e.g. Michel et al. 1996). There are some problems for
which this is the only valid approach, a good example be-
ing the case of the Trojan swarms, where all the objects
are librating about the Jovian L4 and L5 Lagrange points
(Marzari et al. 1996).

Here we present a numerical-based method for assess-
ing the collision probability between pairs of particles
which is applicable to various types of problem. It is fast,
depends on simple assumptions, and in general allows an
accurate estimation of the collision probability between
arbitrary pairs of elliptical orbits.

2. The method

2.1. Assumptions

The algorithm is designed to work with two arbitrary el-
liptical orbits. Due to its nature some classes of problem
(i.e. objects in secular, mean-motion and Kozai reso-
nances, including extreme cases of (e, ω)-coupling) may
be inappropriate for this approach. The basic assumptions
involved are:

1. each orbit has fixed semi-major-axis (a), eccentricity
(e) and inclination (i);

2. the rate of variation of the argument of perihelion (ω)
is greater than that of any of the other elements;

3. the variations of the respective arguments of perihelia
are not correlated.

In addition, we assume that the objects are of small size
compared to their orbits, and that there is no significant
gravitational focusing. The algorithm is readily extended
to incorporate the latter, as we show in Sect. 3.

2.2. Algorithm

Let us suppose that each orbit has semi-major axis, ec-
centricity and inclination (a1, e1, i1) and (a2, e2, i2) re-
spectively. The longitudes of the ascending nodes (Ω1,Ω2

respectively) are assumed to be fixed, as are the inclina-
tions, and hence so too is the mutual inclination ∆i of the
two orbital planes. We allow the arguments of perihelion
of each object, ω1 and ω2, to take all possible values in
the range (−π, π). This defines a two-dimensional phase
space in which the differential collision probability at each
point, P = P (ω1, ω2), can be evaluated. The total collision
probability is then

Ptot =

∫ π

−π

∫ π

−π
P (ω1, ω2) dω1dω2. (1)

Over most of this phase space the collision probability
P (ω1, ω2) is zero because interactions can only occur when
the mutual nodes are sufficiently close. Without loss of
generality the coordinate system can be chosen so that the
origin lies at the focus of the two orbits, the (x, y)-plane
coincides with the orbital plane of the first orbit, and the
x-axis lies along the line of intersection of the two orbital
planes (Fig. 1). In each case ω1 and ω2 are measured in
the orbital plane from the mutual node.

In general, the heliocentric distances r of the ascending
or descending nodes are given by

r =
a(1− e2)

1± e cosω
(2)

and collisions may occur at the ascending node when

a1(1− e2
1)

1 + e1 cosω1
=

a2(1− e2
2)

1 + e2 cosω2
(3)
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Fig. 1. Intersection of orbital planes, illustrating the mutual in-
clination, ∆i, and the definition of the argument of perihelion,
ω, of one orbit measured with respect to the mutual line of
nodes

with a similar expression

a1(1− e2
1)

1− e1 cosω1
=

a2(1− e2
2)

1− e2 cosω2
(4)

for collisions at the descending node. Choosing the ascend-
ing node and replacing a(1 − e2) with p, and solving for
cosω1 we obtain:

cosω1 =
p1 − p2

p2e1
+
p1e2

p2e1
cosω2. (5)

This relation takes the general form

cosω1 = A+B cosω2 (6)

where

A =
p1 − p2

p2e1
(7)

and

B =
p1e2

p2e1
· (8)

This can be differentiated to give

dω1

dω2
=

B sinω2√
1− (A+B cosω2)2

· (9)

Relations (6) through (8) and corresponding equations
for the descending node define the locus of the points in
(ω1, ω2)-space where collisions may occur, illustrated in
Figure 2. Equation (9) is used to determine the tangent
and normal to this curve. We note that the curve is sym-
metrical on both axes, so that looking at one point of
intersection there are at most three others with conjugate
configurations.

We emphasize that, due to the finite size of real ob-
jects, collisions may occur not only on this curve but also
in its immediate vicinity, over a range ∆ω(ω1, ω2) mea-
sured in the (ω1, ω2)-plane perpendicular to the curve of
intersection. For spherical particles ∆ω is proportional
to the combined radius of interaction R = R1 + R2

of the two bodies. Moreover, moving perpendicular to
the curve of intersection, it is straightforward to show
that the differential collision probability at a distance

ω1

ω2π

π

−π

−π

1

2

4

3

3

4

Fig. 2. The figure illustrates the symmetry of the solutions of
Eq. (6) in (ω1, ω2)-space for two typical pairs of orbits. Each
pair of orbits has two solutions. The first pair has solutions de-
noted “1” and “2”; the second has solutions denoted “3” and
“4”. In each case these correspond to an intersection at the as-
cending or descending node. The important points to note are
that (i) each solution shows four-fold symmetry, and one can
be obtained from the other; and (ii) ω1 is always a monoton-
ically increasing or decreasing function of ω2 in the principal
quadrant, depending on whether the intersection occurs at the
the ascending or descending node respectively

|δ| < ∆ω(ω1, ω2) from the collision point (ω1, ω2) is
P (ω1, ω2)

√
1− (δ/∆ω)2, so the differential collision prob-

ability integrated normal to the curve of intersection is
π
2P (ω1, ω2)∆ω(ω1, ω2).

The total collision probability is then calculated by in-
tegrating along the curves of intersection, choosing small
line elements of each curve, determining their dimensions
and summing their resulting contributions to the total
probability. The direction along each curve of intersec-
tion is chosen using dω1/dω2 from Eq. (9). The stepping
can be mirrored to allow for the symmetry, but differing
geometry (associated with the particles’ relative velocities
at collision) means that P and ∆ω may be different for
different mirrored points.

Determination of P (ω1, ω2) and ∆ω(ω1, ω2) requires
a model of the encounter geometry. We adopt a simple
vector approach in which each body is assumed to move at
a constant velocity, denoted v1 and v2 respectively, during
the close encounter. The respective vectors (see Fig. 3) are
determined using the classical formulae for heliocentric
elliptical motion (Roy 1988):

v2 = µ

(
2

r
−

1

a

)
(10)
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Fig. 3. Diagram to illustrate the simplified vector encounter
geometry described in the text

where µ = G(M+m) and G is the gravitational constant,
M is the mass of the central body and m is the mass of
the orbiting particle. If we choose G = 4π2, M = 1 and
m = 0 we have:

v = 2π

√(
2

r
−

1

a

)
(11)

and for the angle φ between the velocity and radius vectors
at the node

sinφ =

(
1 + e cosω

√
1 + e2 + 2e cosω

)
· (12)

(Note that ω is measured from the mutual node, and that
for simplicity we have dropped subscripts 1 and 2 from
Eqs. (10)–(12).) For the first orbit, which lies in the (x, y)-
plane, the velocity vector is (Fig. 3):

v1 = v1(cosφ1, sinφ1, 0) (13)

and for the second, whose plane is inclined at an angle ∆i
to the first, we have

v2 = v2(cosφ2, cos ∆i sinφ2, sin ∆i sinφ2). (14)

In order for a collision to take place, both particles must
arrive at the point of intersection of their respective orbits
at the same moment, within a small time interval ∆t. We
use ∆t to calculate the collision probability P (ω1, ω2) at
the point (ω1, ω2) on the curve of intersection, and then
use the vectors v1 and v2 to evaluate the range ∆ω asso-
ciated with this point on the curve.

Moving the origin of the coordinate system to the point
at which the two paths cross, the motion of the two par-
ticles near the mutual node or collision point can be de-
scribed by

b = v1τ sin θ (15)

where θ is the angle between the two position vectors r′1
and r′2 in the new frame. By replacing the maximum value
of impact parameter b which produces a collision, namely

b = R where R is the radius of interaction for both par-
ticles (i.e. R = R1 + R2 for spheres of radius R1 and R2

respectively), we calculate the maximum value of τ , and
hence obtain ∆t using

∆t = R/v1 sin θ. (16)

Since the temporal window for a collision is 2∆t
per revolution, the differential collision probability per
unit time for such intersecting orbits is P (ω1, ω2) =
2∆t/(Porb,1Porb,2), where Porb,1 and Porb,2 denote the or-
bital periods of each particle.

We now determine the magnitude of the range ∆ω
perpendicular to the curve of intersection. We define s
to be the vector that describes the relative motion of the
two encounter vectors as ω1 and ω2 are varied normal
to the curve of intersection, and introduce a separation
parameter S, analogous to the impact parameter b, whose
value equals R at the extremum ∆ω. We thus have

S =
s · (v1 × v2)

|v1||v2|
(17)

where

s = r(0, δω1 + δω2 cos ∆i, δω2 sin ∆i) (18)

and δω1 and δω2 denote the respective variations of ω1

and ω2 perpendicular to the curve of intersection, with
|δω| < ∆ω. Here, r is the distance from the Sun where
the interaction occurs.

Therefore ∆ω is simply calculated from

∆ω =
R

S
(19)

and the total collision probability is evaluated by summing
the values of π2P (ω1, ω2)∆ω(ω1, ω2) along the curve of in-
tersection in the (ω1, ω2)-plane for a statistically sufficient
number of points.

3. Limitations and problems

3.1. Variation in Ω

The approximations employed in this algorithm are valid
for accurate work in many applications, but there are cer-
tain classes of orbit for which the approximations break
down and may lead to inaccurate results.

First, and perhaps most importantly, the algorithm
assumes a fixed inclination between the two orbital planes.
In reality, the angle Ω changes with time and this results
in a change of the mutual inclination ∆i.

In order to deal with this we repeatedly use the fixed
plane algorithm and integrate across the distribution of ∆i
produced by the variations of Ω1 and Ω2. The integration
is carried out over the variable ∆Ω, the difference between
Ω1 and Ω2, using standard one-dimensional methods over
the interval ∆Ω = (0, 2π).

It is easy to show that ∆i is a simple function of ∆Ω
such that

cos ∆i = cos i1 cos i2 + sin i1 sin i2 cos ∆Ω (20)
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assuming that i1 > i2.
Taking this into account, it becomes possible to cover

the vast majority of orbits, but there remain small regions
of configuration space where the algorithm breaks down
due to geometric singularities. These singularities do not
exist in the real system and arise only as a result of the
simplified encounter geometry, namely the approximation
of rectilinear relative motion during the close encounter.

3.2. Variation in other elements

The algorithm assumes that the elements a, e and i are so
slowly varying that they can be assumed to be constant
over timescales of interest. In some instances this may
not be the case, particularly if the objects are affected by
secular perturbations that significantly affect (for exam-
ple) the eccentricity and inclination, even in cases when
the semi-major axis is approximately constant. The point
has been discussed by Davis et al. (1992), and in prin-
ciple such variations could be accommodated within the
present algorithm by adding further layers of integration
to the model. However, this removes the virtues of sim-
plicity and speed from the model, and would require a
more complete dynamical representation of the system. If
exact results are required in particular cases, then it may
be necessary to return to a computer-intensive numerical
integration scheme.

3.3. Singularities

It is likely that in any application involving a large num-
ber of test bodies some pairs of orbits will lie sufficiently
close to singular regions to produce unrealistic results.
Singularities are also encountered with other methods,
since they are implicit in the assumptions on which the
algorithm is based.

Inaccurate results will be produced by pairs of orbits
with low relative inclinations, and indeed Öpik suggested
that his theory was inadequate for inclinations < 1◦.
The value of ∆ω approaches infinity, at least as evalu-
ated by the simple equations, since as ∆i approaches zero
it becomes impossible to separate the orbits by rotating
them around the origin. Examination of the conditions
makes it clear that the maximum value of ∆ω should be
smaller than the size of the phase space over which we are
integrating.

The simplest way to prevent this is to ensure that the
relative inclination used during the integration is never
less than some critical value. The adjustment of the rel-
ative inclination should be performed on the inclinations
of the input orbits, rather than by limiting ∆i, shifting
the values of i1 and i2 such that Eq. (20) will give a value
higher than our enforced limit for all values of ∆Ω.

Similarly, problems occur when the perihelia or aphelia
of either orbit coincide, since for such orbits the separation

parameter S → 0 at this point and therefore ∆ω diverges.
This is a direct result of approximating the curved trajec-
tories in space at the close encounter by straight lines. For
orbits with configurations sufficiently close to this singu-
larity condition the results will be inaccurate.

In the version of the code implemented by the authors
these singularities are dealt with by interpolating across
the region where the singularity is known to exist. Orbits
with q orQ sufficiently close to the Q or q of the other have
probabilities computed by taking variations of each orbit
with slightly differing elements, the magnitude of these
variations being chosen to be comparable to the short-
term variations in the orbital elements introduced by or-
dinary planetary perturbations. In practical applications
we have found that such an approach produces reasonable
results.

We emphasize that these singularities, arising from
nearly coplanar or tangent orbits, are unphysical, in the
sense (as proved by Wetherill 1967) that the correspond-
ing collision integrals are always finite and can in princi-
ple be evaluated using other methods. One way of dealing
with them is to use a more appropriate numerical integra-
tion technique, as was implemented by Farinella & Davis
(1992); another, involving a suitable change of coordinates
to remove the improper integral, has been discussed by
Milani et al. (1990). In either case, owing to orbital evolu-
tion, the singularities are only short-lived, and the method
of handling them has to be considered in relation to the
physics of the dynamical system.

3.4. Uniformity of sampling within (ω1, ω2)-space

The present algorithm assumes that the orbits sample
(ω1, ω2)-space uniformly. It is difficult to provide simple
rules to determine whether a pair of orbits satisfies this
criterion adequately. For example, both orbits may be in
resonances, leading the orbit pairs to have strongly corre-
lated elements. Such orbits may only explore certain re-
gions of phase space, along specific paths, and we can no
longer logically assume that every point in (ω1, ω2)-space
is equally likely. Obviously, for every pair of orbits the evo-
lution of ω1 and ω2 can in principle be determined, but
good pairs will explore most of (ω1, ω2)-space uniformly.
The approximation to this behaviour is that every point in
(ω1, ω2)-space is equally weighted, as too are the points on
the curve of intersection. Unfortunately, the most straight-
forward way to avoid these difficulties is through a di-
rect numerical integration of the problem orbits, which of
course is computationally expensive and is what this and
similar methods have been designed to avoid.

3.5. Gravitational focusing

The algorithm assumes fixed target radii, but if the bod-
ies have sufficient mass then the effective target area will
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Table 1. Comparison between the total collision probabilities per unit time between various bodies, determined by previous
authors and this work. The values refer to encounters between real objects and the hypothetical test body, Astrid, considered
by Arnold (1965), Wetherill (1967), and Greenberg (1982). The orbital elements of Astrid are (a, e, i) = (2.75, 0.2727, 0.2760),
and in evaluating the total collision probability we have assumed a combined interaction radius R = 1 km, corresponding to
a geometric cross-section for collision σ = π km2. We emphasize that this fictitious body has no relation to the real asteroid
(1128) Astrid. The tabulated values ignore gravitational focusing, and are given in units of 10−18 yr−1. The columns denoted
N&B2 and N&B1 (from Namiki & Binzel 1991) refer to results from their model in which Astrid is taken to be the test particle
and field particle respectively; the difference between these columns provides an indication of the relative accuracy of their
results

Object a e i Arnold Wetherill Greenberg N&B2 N&B1 BG This Work

1948 EA 2.263 0.605 0.3226 1.92 3.10 2.49 3.03 3.19 3.20 3.20

Apollo 1.48 0.56 0.1047 3.03 4.22 3.24 3.46 3.48 3.60 3.60

Adonis 1.97 0.78 0.0349 4.95 4.13 3.92 4.24 4.53 4.53 4.53

1950 DA 1.695 0.506 0.2131 2.19 3.90 3.13 3.61 3.64 3.76 3.76

Comet Encke 2.214 0.847 0.216 2.56 3.49 2.91 3.25 3.43 3.43 3.43

Comet Brorsen 3.099 0.81 0.513 0.79 0.94 0.81 0.90 0.95 0.95 0.95

Comet Grigg-Mellish 30.005 0.969 1.916 0.02 0.022 0.021 0.021 0.022 0.022 0.022

Comet Temple-Tuttle 10.325 0.905 2.839 0.33 0.62 0.60 0.59 0.62 0.62 0.62

Comet Neujmin 4.931 0.588 0.066 0.83 0.89 0.74 0.92 0.90 0.94 0.94

Comet Schaumasse 4.059 0.705 0.209 0.9 1.16 0.91 1.09 1.15 1.15 1.15

Comet Pons-Brooks 17.120 0.955 1.295 0.037 0.041 0.038 0.039 0.041 0.041 0.041

be a function of their relative velocity, owing to their mu-
tual gravitational attraction. For spherical targets with a
combined mass M = M1 + M2 and radius of interaction
R = R1 +R2 the effective cross section, σeff can be calcu-
lated from

σeff = σ

(
1 +

v2
esc

v2
enc

)
(21)

where venc is the relative encounter velocity, σ is the
unfocused cross section (i.e. σ = π(R1 + R2)2), and
v2

esc = 2GM/R. This correction must be applied at each
point of the sampled curve, since the relative velocity is a
function of (ω1, ω2).

We note that both P (proportional to ∆t) and ∆ω are
proportional to R, so the resulting collision probability is
proportional to R2 and therefore proportional to σ.

4. Tests and results

This algorithm was designed to calculate efficiently the
collision probability per unit time between objects mov-
ing in arbitrary elliptical orbits. The algorithm has been
tested in a variety of ways and against a number of pre-
vious results. First we compare our results with those of
Wetherill (1967) and subsequent workers, who have deter-
mined the intrinsic collision probability between a num-
ber of selected comets and asteroids against a hypothet-
ical test body, Astrid’, with orbital elements (a, e, i) =
(2.75 AU, 0.2727, 0.2760 (rads)). The results are shown in
Table 1, which shows excellent agreement with the inde-
pendent results of Namiki & Binzel (1991) and Bottke

& Greenberg (1993), denoted N&B1, N&B2 and BG
respectively.

Next we evaluated the impact probabilities of selected
objects with the Earth. Table 2 shows the comparison be-
tween a number of Apollo and Aten asteroids, with orbital
elements and other data from Shoemaker et al. (1979)
and results from the Öpik method taken from Steel &
Baggaley (1985). Table 3 gives corresponding results for
comets, taken from Olsson-Steel (1987), and Table 4 shows
the equivalent comparison for long-period comets with ex-
tremely high impact probabilities, with elements taken
from Marsden & Steel (1994).

These results are also in good agreement with those of
previous authors, with several notable exceptions, namely:
(2101) Adonis (Table 2), 1862 II = C/1862N1 and 1945 III
= C/1945L1 (Table 4). The first of these is close to a
singularity at low inclination; the second and third have
perihelion distances close to that of the Earth. As we have
discussed, most methods for evaluating the collision prob-
ability experience singularities at very low and very high
relative inclinations, and when either the perihelion or
aphelion of one orbit is in close proximity to those points
in the other orbit. These minor differences show that fur-
ther work is required in order to determine the precise
value of the impact probability for some of these more
extreme cases.

We have confirmed that the mean terrestrial impact
probability pE for an isotropic flux of nearly parabolic or-
bits with perihelion distances uniformly distributed in the
interval 0−1 AU is 2.18 10−9 per revolution (cf. Weissman
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Table 2. Impact probabilities between representative near-Earth asteroids and the Earth, per billion years, taken from Steel &
Baggaley (1985), compared with results from this paper

Object a Period e i Collision probability per billion years

(AU) (years) (deg) SB SWHW Öpik This paper

(2100) Ra-Shalom 0.8321 0.7590 0.4364 15.76 6.11 6.7 6.3 6.12

(2340) Hathor 0.8439 0.7752 0.4498 5.86 14.71 14.0 14.0 14.71

(2062) Aten 0.9665 0.9502 0.1826 18.94 8.01 6.4 6.9 8.02

(1566) Icarus 1.0779 1.1191 0.8268 22.91 1.77 2.0 1.6 1.77

(1865) Cerberus 1.0801 1.1225 0.4669 16.09 3.14 3.1 2.5 3.14

(2102) Tantalus 1.2900 1.4652 0.2984 64.02 2.50 1.5 2.5 2.49

(1864) Daedalus 1.4609 1.7658 0.6148 22.16 1.27 1.6 1.0 1.27

1937 UB Hermes 1.6393 2.0989 0.6236 6.22 3.50 3.7 2.2 3.49

(1981) Midas 1.7759 2.3666 0.6499 39.84 0.65 0.7 3.8 0.65

(2101) Adonis 1.8749 2.5672 0.7638 1.36 11.53 6.3 2.9 11.53

Table 3. Impact probabilities between representative Earth-crossing comets and the Earth taken from Olsson-Steel (1985) and
comparison with this paper. The Olsson-Steel results are given in units per billion orbits and per billion years respectively, and
those from this paper are in units per billion years. Note that the orbital elements are those used by Olsson-Steel

Object a Period e i Olsson-Steel results This paper

(AU) (years) (deg) (10−9/rev) (10−9/yr) (10−9/yr)

2P/Encke 2.21 3.3 0.846 11.9 3.4 1.035 1.015

5D/Brorsen 3.11 5.5 0.810 29.4 1.6 0.292 0.299

3D/Biela 3.53 6.6 0.756 12.6 4.8 0.724 0.721

8P/Tuttle 5.73 13.7 0.823 54.5 2.9 0.211 0.279

55P/Tempel-Tuttle 10.23 32.7 0.904 162.7 30.0 0.917 1.127

12P/Pons-Brooks 17.20 71.3 0.955 74.2 1.5 0.021 0.021

1P/Halley 18.00 76.4 0.967 162.2 5.0 0.065 0.065

109P/Swift-Tuttle 25.00 125.0 0.960 113.6 5.4 0.043 0.049

35P/Herschel-Rigollet 29.00 156.2 0.974 64.2 1.4 0.009 0.009

1997 and refs. therein), with a mean impact velocity in-
cluding gravitational focusing of 54.9 km s−1. Alternative
expressions for the frequency distribution of long-period
comets versus perihelion distance (Everhart 1967; Kresák
1978) generally show an increase with perihelion distance.
This leads to a higher average terrestrial impact probabil-
ity, namely: (2.46, 2.36, 2.50) 10−9 per revolution, for what
Kresák (1978) respectively calls Everhart’s empirical and
alternative models, and Kresák’s uniform density model.
The observed long-period comets, whilst not necessarily
representative of the intrinsic near-parabolic flux, show
an even stronger increase with perihelion distance towards
1 AU, and give a mean impact probability of 3.3 10−9 per
revolution (cf. Shoemaker 1984; Olsson-Steel 1987).

In order to test the performance of the algorithm with
a large ensemble, we examined the set of 682 asteroids
with diameters D > 50 km used by Farinella & Davis
(1992) and later by Bottke et al. (1994) and Vedder (1998).
The distribution of collision velocities was determined for
every interacting pair and the total summed distribu-

Table 4. Selected long-period comets with high impact proba-
bilities with respect to the Earth and comparison between the
results of Marsden & Steel (1994), denoted MS, and this paper.
Note that orbital elements have been taken from Marsden &
Steel. The impact probabilities are quoted in units of 10−8 per
revolution

Object q e i MS This paper

(AU) (deg)

1862 II 0.9813 1.0000 172.11 26.00 7.11

1864 II 0.9093 0.9964 178.13 10.30 10.27

1759 III 0.9658 1.0000 175.13 6.91 6.76

1945 III 0.9981 1.0000 156.51 2.68 1.64

1743 I 0.8382 1.0000 2.28 2.21 2.21

1987 III 0.8696 0.9957 172.23 2.06 2.05

tion is shown in Fig. 4. The mean colision velocity is
5.30 km s−1, which may be compared with the values
calculated by Farinella & Davis (1992); Bottke et al.
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Fig. 4. The figure shows the frequency distribution of collision
velocities for main-belt asteroids with diameters d > 50 km

(1994) and Vedder (1998) of 5.81 km s−1, 5.29 km s−1 and
4.22 km s−1 respectively. Similarly, the intrinsic collision
probability for this sample (assuming a diameter of 1 km
for each object, i.e. corresponding to an interaction cross-
section of π km2; cf. Table 1), is 2.79 10−18 yr−1 km−2,
which may be compared with the values 2.85 10−18 yr−1

km−2 and 3.27 10−18 yr−1 km−2 reported by Farinella &
Davis (1992) and Vedder (1998) respectively. The method
of the latter author appears to lead to a slightly lower
mean impact velocity and a slightly higher mean intrinsic
collision probability. Use of the present algorithm resulted
in a total collision probability for the 682-asteroid ensem-
ble of 7.26 10−9 yr−1, implying a mean time ∼140 Myr for
collisions between objects in the ensemble. Collisions be-
tween these large objects could result in the formation of
asteroid families, and possibly showers of kilometre-sized
fragments on Earth-crossing orbits via fast-track resonant
dynamical pathways (Zappalà et al. 1998).

5. Conclusions

Comparison with other methods shows that the algorithm
does not suffer from the same limitations as those of Öpik
and Wetherill, and while its assumptions are similar to
those of Greenberg the choice of reference frame makes the
algorithm faster. Although this algorithm is much slower
than use of Öpik’s simple equations, it is still fast enough
to carry out large numbers of comparisons, typically al-
lowing several comparisons to be made per second on a
desktop PC at 4 significant figure accuracy (cf. Vedder
1996, 1998; Dell’Oro & Paolicchi 1997).

At this precision large-scale surveys of collision rates
in the solar system become possible, and the entire popu-
lation of known asteroids can be analysed in a matter of
hours. This opens the door to realistic simulations of col-
lision rates in many new classes of problem, for example
detailed particle generation rates resulting from collisions

in the zodiacal cloud, asteroid belt and Edgeworth-Kuiper
belt. The source code is available on request from the first
author.
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Zappalà V., Cellino A., Gladman B.J., Manley S.P., Migliorini

F., 1998, Icarus (in press)


