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Abstract. Total power scans across the Moon around New
Moon (mostly day time) and Full Moon (night time) at
3.4 mm (88 GHz), 2.0 mm (150 GHz), 1.3 mm (230 GHz),
and 0.86 mm (350 GHz) wavelength are used to derive the
beam pattern of the IRAM 30–m telescope to a level of
approximately −30 dB (0.1%) and, dependent on wave-
length, to a full width of 1000 − 1400′′. From the reflec-
tor surface construction and application of the antenna
tolerance theory we find that the measurable beam con-
sists of the diffracted beam, two underlying error beams
which can be explained from the panel dimensions, and
a beam deformation mostly due to large–scale transient
residual thermal deformations of the telescope structure.
In view of the multiple beam structure of the 30–m tele-
scope, and of other telescopes with a similar reflector
construction of (mini–)panels and panel frames, we sum-
marize the antenna tolerance theory for the influence of
several independent surface/wavefront deformations. This
theory makes use of different correlation lengths, which in
essence determine the independent error distributions, and
of the wavelength–scaling of the diffracted beam and of the
error beams.

From the Moon scans we derive the parameters for
calculation of the 30–m telescope beam in the wavelength
range 3 mm to 0.8 mm as required for the reduction of as-
tronomical observations, in particular of extended sources.
The parameters of the beam are primarily for the time af-
ter July 1997 when the reflector was re–adjusted and im-
proved to the illumination weighted surface precision of
σT = 0.065− 0.075 mm.

In the Appendix we explain the choice for this analysis
of scans taken around New Moon and Full Moon.
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1. Introduction

Observations with a single dish radio telescope are made
with a finite size beam of which the theoretical pattern is
often degraded by imperfections of the telescope, primarily
deformations of the main reflector surface. A knowledge
of the actual beam profile is required for the reduction
of astronomical observations and estimates of a possible
improvement of the telescope. The theoretical beam pat-
tern can be calculated from the Theory of Physical Optics
(Born & Wolf 1980; Love 1978; Christiansen & Högbom
1985; Kraus 1986); the beam degradation can be calcu-
lated from the Theory of Aberrations (Born & Wolf 1980)
and the Antenna Tolerance Theory (Scheffler 1962; Ruze
1952, 1966; Shifrin 1971; Baars 1973), both specified by
a few basic parameters which must be determined from
measurements of the wavefront error topography or the
beam pattern itself. The wavefront (reflector surface) er-
ror topography can be derived, for instance, from hologra-
phy measurements (Morris et al. 1988; Whyborn & Morris
1995); the actual beam pattern can also be derived, for in-
stance, from scans across a strong point–like radio source
or a satellite beacon, or from scans across the limb of the
Moon and the Sun (Horne et al. 1981; Lindsey & Roellig
1991). The measured beam pattern reveals, in general,
the influence of spatially large–scale and small–scale wave-
front deformations. Large–scale deformations distort the
central part of the beam; small–scale deformations pro-
duce one, or several, underlying, extended error beams.
We analyze total power scans across the Moon at 3.4 mm
(88 GHz), 2.0 mm (150 GHz), 1.3 mm (230 GHz), and
0.86 mm (350 GHz) wavelength, and provide in addition to
the earlier investigation of Garcia–Burillo et al. (1993) the
parameters of an analytic expression of the IRAM 30–m
telescope beam as required for the reduction of astronom-
ical observations, in particular of extended sources. (For
a description of the 30–m telescope and its behaviour see
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Baars et al. (1987, 1994) and Greve et al. (1993, 1996a,
1998)).

This publication consists of two parts. The first part
explains the theory of beam degradation from several sur-
face error distributions, and we confirm this theory with
multi–wavelength beam patterns of the 30–m telescope
derived from Moon limb scans observed before July 1997
(Sects. 2,3). The second part explains the result of the
latest surface adjustment (July 1997), and we provide the
current parameters for calculation of the 30–m telescope
beam (Sects. 4–6). In detail, Sect. 2 summarizes the an-
tenna tolerance theory for a combination of several large–
scale and small–scale wavefront (reflector surface) defor-
mations, as appropriate for the understanding of the 30–m
telescope and other telescopes of similar reflector design.
In this theory we use the deformation correlation length(s)
to anticipate the structure of the degraded beam from de-
tails of the reflector surface construction. We explain in
Sects. 3.1–3.3 how we derive in an empirical way the para-
meters of the degraded beam from the comparison of ob-
served and calculated scans across the limb of the Moon,
taken around New Moon (mostly day time) and Full Moon
(night time). In particular we confirm the wavelength scal-
ing of the error beam(s). In Sect. 3.4 we show the reflec-
tor surface error correlation function, derived from holog-
raphy measurements, which confirms in an independent
way the correlation lengths used in the analysis of the
Moon scans. We explain in Sect. 3.5 in which way the
standard Ruze relation is modified for the case of several
error distributions. In Sect. 4 we explain the surface preci-
sion obtained from the July 1997 panel frame adjustment
(Morris et al. 1996, 1997). Sect. 5 shows the current beam
patterns of the 30–m telescope at 3.4 mm, 2.0 mm, and
1.3 mm, and Sect. 6 gives the current telescope efficiencies.
In the Appendix we explain our choice of scans around
New Moon and Full Moon. We follow the notation used
by Downes (1989) and used at the 30–m telescope (see
Mauersberger et al. 1989).

2. Terminology and theory

2.1. The structure of the beam pattern

The directional response, i.e. the beam F = Fc + Fe of a
single dish radio telescope consists of the diffracted beam
Fc, formed by coherently focused radiation, and the error
beam(s) Fe, formed by radiation “scattered” towards the
focal plane. The diffracted beam Fc = Fmb + F sl consists
of the main beam Fmb and sidelobes F sl. The diffracted
beam of a perfect, circular reflector of diameter D (with
vertex hole, shadowing from the subreflector and its sup-
port, illumination taper of the receiver etc.) is a tapered
Airy–type pattern AT with components AT = AT,mb +
AT,sl. For a shallow, perfect, full aperture, non–tapered
reflector the diffracted beam is A(u) = [J1(u)/u]2 with J1

the Bessel function of first order and u the spatial coordi-
nate of the focal plane (Born & Wolf 1980). The steepness
of a radio reflector and the illumination taper preserves to
a large extent the sidelobe structure of the Airy pattern
(Minnett & Thomas 1968; Goldsmith 1987; see Sect. 5),
however, the sidelobe levels are made by purpose signi-
ficantly lower than those of the non–tapered beam. The
width (FWHP) of the main beam AT,mb is

θb = kλ/D [rad] (1)

with k (1 ≤ k <∼ 1.4) a factor dependent on the illumina-
tion taper and blockage of the aperture (Christiansen &
Högbom 1985; Kraus 1986). Measurements with the 30–m
telescope and current SIS receivers of ∼ −13 dB Gaussian
edge taper give k = 1.16 for 0.8 mm <∼ λ <∼ 3 mm (Kramer
1997).

We assume in the following that the beam is degraded
by phase perturbations of the wavefront δϕ ≈ 2 (2π/λ)δ
which are primarily due to deformations δ of the main
reflector surface. For a good quality telescope we may as-
sume also that the phase perturbations are small com-
pared to the wavelength so that the resulting beam degra-
dation is the sum of the individual degradations (see
Shifrin 1971; Sect. 2.4). In addition we assume that the
main reflector surface is constructed from a large number
of panels. Large–scale surface deformations, which do not
change significantly over several panel areas or a consider-
able fraction of the reflector surface, degrade the diffrac-
tion pattern but preserve, in general, the main beam and
sidelobe structure. Small–scale wavefront deformations,
which change significantly over single panel areas or panel
sub–sections, produce the underlying error beams. Surface
deformations which change over distances of wavelengths
behave like rough surfaces, and are discussed in optical
journals.

Different mathematical formalisms are used to calcu-
late the beam degradation from spatially large–scale and
small–scale wavefront deformations.

2.2. Large–scale deformations

Large–scale deformations, which often appear as system-
atic deformations, are described by combinations of low
order Zernike polynomials Zij (i <∼ 10, j <∼ 10)

δ =
∑

i,j
aijZij =

∑
i,j
aijRi(ρ)cos(jψ) (2)

(with Ri functions of the normalized aperture radius ρ,
ψ the azimuth angle of the aperture, and aij the ampli-
tude of component (ij)) (Born & Wolf 1980; Greve et al.
1996b), or other orthogonal functions for decomposition
of wavefront deformations (Smith & Bastian 1997). The
corresponding, degraded, tapered beam pattern Zc,T has
a main beam and sidelobes, and can be calculated ex-
actly from diffraction theory. Well known examples are
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defocus (Z10, Z20), coma (Z31), and astigmatism (Z22).
These deformations are sometimes due to misaligned
components, for instance a misaligned subreflector or a
misaligned receiver.

2.3. Small–scale deformations

Small–scale random1 deformations of the reflector surface
are characterized by the (root mean square) rms–value
σ and the spatial correlation function Cδ(d) (0 ≤ d ≤
D)2. For a reflector surface sampled at a large number of
positions (n = 1, 2, ..., K; with K a few hundred), the
rms–value is

σ2 =
∑

n=1,K
(δn)2/K,

∑
δn = 0 (3)

for deformations δn measured in the normal direction of
the best–fit reflector surface. The quantity σ is the geomet-
rical rms–value of the surface errors (Greve & Hooghoudt
1981). The rms–value σϕ of the associated wavefront de-
formation (including a factor 2 because of reflection) is

σϕ = R (4π/λ)σ = 2Rk σ = 2 k σT, k = 2π/λ (4)

with the reduction factor R = 0.8− 0.9 for a steep radio
reflector of focal ratio N = F/D ≈ 0.3 and a − 10 dB to
−15 dB edge taper of the illumination. σT = Rσ is the
tapered, or illumination weighted, rms–value of the surface
errors (Greve & Hooghoudt 1981) as derived, for instance,
from aperture efficiency and holography measurements.
The normalized correlation function Cδ(d) with Cδ(0) = 1
is

Cδ(d) =

[∑
(1,2)

δ(r1)δ(r2)/N1,2

]
/σ2 = C+

δ /σ
2 (5)

with the summation (1,2) extending over the number N1,2

of pairs (r1, r2) [r = (x, y)] of positions in the aperture
(A) with separation

|r1 − r2| = d ≤ D. (6)

The correlation function of the corresponding wavefront
deformations [δϕ] is

Cϕ(d) =

[∑
(1,2)

δϕ(r1)δϕ(r2)/N1,2

]
/σ2

ϕ = C+
ϕ /σ

2
ϕ (7)

with Cϕ ≈ Cδ. The degraded beam pattern at the position
u = (u, v) of the focal plane is (Scheffler 1962)

F(θ) ≡ F(u) ∝

1 We exclude small–scale periodic deformations which act like
gratings (for instance warped panels, regular surface ripples
from machining, etc.), although such deformations occasionally
do occur. The grating theory of a paneled reflector surface is
not available; however, some special investigations have been
published (Cortes–Medellin & Goldsmith 1994; Hills & Richer
1992; Harris et al. 1997).

2 The values σ and Cδ can also be calculated for large–scale
deformations, however, they do not always contain a physical
meaning as for small–scale random deformations (Greve 1980).

exp[−(σϕ)2]

∫ ∫
A

dS1dS2exp[C+
ϕ (d)]exp[iku(r1−r2)/f ](8)

with dSi = (dxdy)i a surface element of the aperture (A).
The angular distance θ from the focal axis of the position
u = (u, v) is θ =

√
u2 + v2/f [rad], with f the effective

focal length of the telescope. In order to obtain an ana-
lytic expression of Eq. (8), it has been assumed (Scheffler
1962; Ruze 1966; Shifrin 1971; see the criticism/support
by Schwesinger 1972; Greve et al. 1994a) that3

Cδ(d) ≈ Cϕ(d) ∝ exp[−(d/L)2] (9)

with L the correlation length4 of the deformations [δ].
Under the assumption of a Gaussian correlation length
distribution (Eq. (9)), the degraded beam pattern F(θ) is
circular symmetric and

F(θ) = Fc(θ) + Fe(θ)

= exp[−(σϕ)2]AT(θ) + ae exp[−(πθL/2λ)2] (10)

with

ae = (L/D)2[1− exp[−(σϕ)2]]/ε0 (11)

for σϕ <∼ 1 (Scheffler 1962; Ruze 1966; Vu 1969; Baars
1973) as existing on a good quality telescope. ε0 is the
aperture efficiency at long wavelengths. The normalization
is F(θ = 0) = 1 for σ = 0 (which implies L = 0). The width
(FWHP) of the error beam is

θe = 0.53λ/(L/2) [rad]. (12)

This tolerance theory of a single small–scale error distribu-
tion [δ] with correlation length L, as discussed in the basic
publication of Scheffler (1962), Ruze (1966), and Robieux
(1966), is verified by a large number of investigations of
optical telescopes and radio telescopes (see in particular
Ruze 1966; Vu 1970a)5.

2.4. The combination of small–scale and large–scale
surface deformations

It is reasonable to assume that a paneled reflector surface
may have several independent error distributions [δi] with

3 Shifrin (1971) analyzes also the exponential correlation
length distribution; however, arguments are given that the
Gaussian correlation length distribution represents the more
realistic case.

4 L = 2c, with c the correlation radius (Ruze 1966; Baars
1973).

5 The term Fc(θ) of Eq. (10) was first derived by Väisälä
(1922) to quantify the precision of optical surfaces. The term
was re–discovered by Marechal (1947), Scheffler (1962), Ruze
(1966), Robieux (1966), and others, however, with the under-
standing of being valid only in the case of an uncorrelated error
distribution (L = 0). Nevertheless, this term is frequently used
in efficiency calculations although, apriori, being correct only
in case of uncorrelated errors (see Sect. 3.5).
The derivation of the beam pattern Eq. (8) is valid for a shallow
reflector as used in optical telescopes. However, Eq. (10) can
also be used for a steep radio reflector in case the appropriate
diffraction pattern AT is used (see Sect. 5).
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different rms–values [σi] and different correlation lengths
[Li]. The surface of the IRAM 30–m reflector6 contains
independent large–scale and small–scale errors of which
the characteristic correlation lengths are anticipated from
the mechanical construction.

The surface of the 30–m reflector consists of 7 rings of
panel frames (in total 210) with each frame holding two
panels. A panel (average size ∼ 1 × 2 meter) is attached
to its frame by 15 screws, arranged in 5 parallel rows with
approximately 1/4 × 2 m ≈ 0.5 m spacing. These sup-
port screws were used to adjust the panel contours to an
average precision σp ≈ 0.03 mm, as measured in the fac-
tory (Baars et al. 1987). From the geometry of the panel
support and contour maps of the panel surfaces (Fig. 1)
as measured in the factory, we anticipate that the resid-
ual deformations of the adjustments have a correlation
length Lp of approximately 1/4 length of a panel, so that
Lp = 0.3 − 0.5 m and Lp/D ≈ 1/75. The width of the
anticipated error beam is θe,p ≈ 75 θb (Eqs. (1, 12)).

A panel frame (average size ∼ 2 × 2 meter) is at-
tached to the backstructure by adjustment screws located
at the four frame corners. A panel frame which is mis-
aligned in piston and/or tilt represents a surface area of
correlated deformations. The weighted distance between
the centers of adjacent panel frames gives the correlation
length La = 1.5− 2.0 m so that La/D ≈ 1/17. The width
of the anticipated error beam is θe,a ≈ 17 θb (Eqs. (1, 12)).

For two independent small–scale surface error distribu-
tions [δ1] and [δ2], with Gaussian correlation length dis-
tributions L1 and L2, the effective surface rms–value σ is
(see Eq. (3))

σ2 =
∑

(δ1,n + δ2,n)2/K

=
∑

(δ1,n)2/K +
∑

(δ2,n)2/K = σ2
1 + σ2

2 (13)

since
∑
δ1,nδ2,n = 0. The correlation function of the com-

bined error distribution [δ] = [δ1] + [δ2] is

Cδ(d) = [C+
δ,1(d) + C+

δ,2(d)]/[σ2
1 + σ2

2 ]

∝
∑

i=1,2
exp[−(d/Li)

2]/
∑

σ2
i . (14)

When using the correlation function of the corresponding
wavefront deformation (see Eq. (7)) in Eq. (8) under the
assumption that the phase rms–values σϕ,i are small so
that the integral can be split into the sums of the individ-
ual contributions, i.e.

F(θ)=exp[−
∑
i

(σϕ,i)
2]

∫∫
dS1dS2exp[

∑
i

C+
ϕ,i(d)]exp[...]

6 The subreflector of the 30–m Cassegrain telescope and the
Nasmyth mirrors may have additional surface errors. However,
in general, these mirrors are more precise than the main reflec-
tor, and thus may be neglected (see Rush & Wohlleben 1982).
For other reflectors with several error distributions see, for in-
stance, the Itapetinga 14–m telescope (Kaufmann et al. 1987)
and the JCMT 15–m telescope (Hills & Richer 1992; Prestage
1993).

Fig. 1. Surface contours as measured in the factory of five ran-
domly selected panels. The dots show the positions of the ad-
justment screws; the circles illustrate the size of a correlation
cell of Lp = 0.3 − 0.5 m diameter as the influence area of an
adjustment screw. Contour levels at 0.015 mm

Fig. 2. Total power scans across the Moon. The 3.4 mm obser-
vation (thick line) was made 0.5 days after New Moon (6 Sep.
1994); the 0.86 mm observation (thin line) was made 4 days
before New Moon (5 Mar. 1997). Note the decrease in sharp-
ness of the limb with decreasing wavelength. (The structure of
the 3.4 mm scan shows features of the Moon’s surface)

≈
∑

i
exp[−(σϕ,i)

2]

∫ ∫
dS1dS2exp[C+

ϕ,i(d)]exp[...] (15)

then the beam pattern degraded by several independent
small–scale deformations [δi] with Gaussian correlation
length distributions [Li] (Eq. (14)) is

F(θ) = exp[−(σϕ)2]AT(θ)+
∑

i
ae,iexp[−(πθLi/2λ)2](16)

where the amplitude ae,i = (Li/D)2[1− exp[−(σϕ,i)
2]]/ε0

(Eq. (11)) of the error beam [i] is related only to the
rms–value σi and the correlation length Li of the er-
ror distribution [δi]. Equivalent to Eq. (13), in Eq. (16)
σϕ

2 =
∑

(σϕ,i)
2. For a rigorous discussion of several

small–scale error distributions, the proofs of Eq. (14) and
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Fig. 3. Composite profiles [fM(u)] (i.e. scans across the left and right limb of the Moon and differentiated along the scan direction)
observed around New Moon. For each wavelength we show two measurements (solid dots, open circles) and error bars to
demonstrate the repeatability of the observations. The solid lines show the synthetic best–fit profiles [fS(u)], extrapolated
somewhat beyond the measurements. The observations at 3.4 mm, 2 mm, and 1.3 mm are made simultaneously; at 0.86 mm
wavelength only observations 4 days before New Moon are available. (The data refer to the situation before July 1997)
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Eq. (16), and the validity of relation (15) see Shifrin (1971,
chapter 5).

Following the explanation of Sect. 2.2, additional
large–scale deformations cover areas of several panel
frames so that their correlation length is, say, Ll ≈ 5 La.
The width of the anticipated error beam is θe,l ≈ 5 θb

(Eqs. (1, 12)). For large–scale deformations the diffraction
pattern AT of Eq. (16) is replaced by the corresponding
low order Zernike polynomial diffraction pattern Zc,T, for
instance a comatic or astigmatic beam.

3. The IRAM 30–m telescope beam structure

We analyze multi–wavelength beam profiles of the 30–m
telescope obtained from Moon limb scans, and demon-
strate that the antenna tolerance theory of several error
distributions explained above gives consistent results for
the beam structure and the efficiencies.

3.1. Measurements

We applied the method of total power Moon limb scans to
derive the beam at 3.4 mm, 2 mm, 1.3 mm, and 0.86 mm
wavelength, using SIS receivers of 500 MHz bandwith and
similar Gaussian illumination of ∼ −13 dB edge taper.
The scans of 3600′′ length, across the Moon of ∼ 1800′′

diameter, allow an investigation of the beam to a distance
of ∼ ± 900′′ from the beam axis. After focusing the tele-
scope, the data of a scan were taken on–the–fly in 120 s at
a spatial resolution of 6′′ (200 ms sampling rate). Linear
baselines, determined at the outermost ±30′′, were sub-
tracted from the scans. The observations were made under
very stable atmospheric conditions so that the measure-
ments are reliable to a level of approximately −30 dB, i.e.
∼0.1% of the peak intensity7. The measurements were
made at intermediate elevations where the homology de-
formations of the reflector are small (Greve et al. 1998).
For the analysis we have taken scans around New Moon
(mostly day time) and Full Moon (night time) which pro-
vide for the analysis the advantage of a simple brightness
distribution of the Moon (Sect. 3.2, Appendix), and also
the possibility to investigate the day and night time per-
formance of the telescope.

Figure 2 shows a 3.4 mm and a 0.86 mm total power
scan across the Moon, taken around New Moon. The dis-
tortion of the intrinsically sharp limb is due to the finite
beam of the telescope.

3.2. Moon scans and profiles

Within the limitations of the antenna tolerance theory, the
beam pattern (Eq. (16)) is circular symmetric so that any

7 Except the measurements at 1.3 mm wavelength (Fig. 3)
made with a noisier receiver.

Fig. 4. Composite profiles fM(u) derived from observations at
2 mm wavelength at Full Moon (dots) and New Moon (open
circles, see Fig. 3). The heavy line and the thin line show the
best–fit synthetic profile fS(u) for Full Moon (night time) and
New Moon (day time), respectively. The additional degrada-
tion during day time (New Moon) is a partially transient effect
and is in many cases smaller than shown here. (The data refer
to the situation before July 1997)

scan direction across the Moon, around New Moon and
Full Moon, may be used to derive the beam parameters.
For this we use an empirical approach and compare ob-
served scans across the limb [PM(u), differentiated in scan
direction called fM(u)] with synthetic scans [PS(u), dif-
ferentiated in scan direction called fS(u)]. The synthetic
scans are calculated from the convolution of the beam
F(θ) ≡ F(u, v) (Eq. (16)) and the brightness distribu-
tion TM(u, v) of the Moon. For measurements around New
Moon and Full Moon we use the symmetric brightness dis-
tribution TM = T0Π(u, v) with T0 the average brightness
and

Π(u, v) = 1 + CM (1− ρ2), ρ =
√

(u2 + v2)/(15′) (17)

for u2 + v2 ≤ (15′)2, and zero outside. For New Moon we
use CM = 0, for Full Moon we use CM = 0.5 (see Fig. 10a
below). With u measured near culmination approximately
in East–West direction through the center of the Moon,
and v perpendicular to this direction, a synthetic total
power scan is

PS(u) ∝ T0

∫ ∫
F(u′, v′)Π(u− u′, v′) du′dv′. (18)

In a similar way as applied to the observed profiles fM(u),
the synthetic composite profiles

fS(u) = dPS(u)/du (19)

are constructed from sections fS(u) with the left and
right wing of the profile taken outside (15′ ≤ |u|) the
right and left limb of the Moon. For observations around
New Moon and Full Moon, the sections fS(u) of the left
(∼ East) and right (∼West) wing are symmetric and may
be added to obtain a composite profile (see Figs. 10b,c
below). Figure 3 shows for New Moon the observed and
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Fig. 5. Best–fit values (solid dots) of the widths θe and am-
plitudes ae of the error beams deduced from the observed
profiles of Fig. 3, and their approximations (solid lines) from
Eq. (12) and Eq. (11), respectively. EB denotes the different er-
ror beams. The 1st EB is a partially transient phenomenon; the
data (open circles) are shown for New Moon day time measure-
ments. The heavy lines are the current parameters of the beam
pattern. The dashed line (2nd EB) and the related measure-
ments (solid dots) refer to the situation before the adjustment
of July 1997

the best–fit synthetic profiles, fM(u) and fS(u), respec-
tively; Fig. 4 shows a similar profile at 2 mm wavelength
observed at Full Moon. We emphasize that the differenti-
ation (Eq. (19)) is not a deconvolution so that the profiles
fM and fS shown in Fig. 3 and Fig. 4 do not exactly rep-
resent the true beam pattern of the telescope.

3.3. The beam parameters

We determined the best–fit beam pattern F(u, v)
(Eq. (16)) in an empirical way by minimizing the differ-
ence |fM(u)−fS(u)| of the observed and synthetic profiles,
using the measured main beam widths θb and measured
main beam efficiencies Beff , the calculated diffraction pat-
tern AT (Sect. 5), the anticipated correlation lengths and
corresponding error beams Fe, and also the fact that the
beam structure should scale with wavelength. Figure 3
and Fig. 4 show the best–fit synthetic profiles fS(u); the
corresponding beam parameters are shown in Fig. 5.

A consistent interpretation of the measurements shown
in Fig. 3 (Fig. 4) is obtained for a beam which consists
of the diffracted beam AT and at least two persistent

Fig. 6. Correlation functions derived from holography measure-
ments, and Gaussian correlation length distributions calcu-
lated from Eq. (9). a) Full extent of the empirical correlation
functions, for Oct. 1993, Mar. 1994, Nov. 1994: thin lines; for
Sep 1996: thick line. b) Detailed view of the empirical cor-
relation function of Sep. 1996 (histogram) and the individual
Gaussian correlation functions calculated for Lp = 0.3 m: curve
3; La = 1.5 m: curve 2; and Ll = 2.5 m: curve 1. The normal-
ization is made to curve 2 (2nd EB). The lower curve 1 is due
to a low night–time rms–value of the 1st EB

error beams (EB) with correlation lengths 0.3 (+0.2
−0.1) m

and 1.5 (+0.5
−0.1) m. These correlation lengths are identified

with the anticipated panel surface errors (Lp) and the
panel frame adjustment errors (La), respectively. In ad-
dition, there exists a partially transient degradation close
to the main beam which may be interpreted as an error
beam (1st EB) due to large–scale deformations with cor-
relation length 3 (+1

−0.5) m. This transient degradation is
probably due to known transient residual thermal defor-
mations of the reflector surface and the telescope struc-
ture8 (Greve et al. 1993, 1994b). When present, the tran-
sient thermal deformations are especially noticed during
day time and sunshine (for instance as focus changes) and
the comparison of measurements around New Moon and
Full Moon illustrates this effect (see Fig. 4). From the
correlation lengths mentioned above and the measured
ratios Fe,i(0)/Fc(0) [Eq. (16), Eq. (11)] we derive, for
the time before July 1997, the rms–values σl(1st EB) ≈
0.03− 0.06 mm (see the footnote of Table 1), σa(2nd EB)
≈ 0.07 mm, and σp(3rd EB) ≈ 0.055 mm. The illumina-

tion weighted rms–value σT = R
√
σ2

1 + σ2
a + σ2

p ≈ 0.8 ×

(0.095−0.11) ≈ (0.075−0.085) mm derived in this way is
consistent with the holography measurements (D. Morris,

8 For instance, differential thermal dilatations of the subre-
flector support produce a shift of the subreflector and by this
a focus offset and a slightly comatic beam. In a rigorous way,
these displacements produce a deformation of the wavefront,
and are not main reflector errors.
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Table 1. Beam parameters of the IRAM 30–m telescope (after July 1997)

Main Beam a) 1st Error Beam b) 2nd Error Beam c) 3rd Error Beam
(AT) (Fe,1) (Fe,2) (Fe,3)

Origin Diffraction Large–scale Panel Frame Panel
Pattern Deformations Misalignments Deformations

Correlation Length Ll = 2.5− 3.5 m La = 1.5 − 2.0 m Lp = 0.3− 0.5 m
Rms–value σ1 <∼ 0.06 mm σa = 0.055 mm σp = 0.055 mm

3.4 mm / 88 GHz
Beam Width (FWHP) θb = 27.5′′ θe,1 = 300′′ θe,2 = 410′′ θe,3 = 2500′′

θe/θb 10 15 90
Power Amplitude ab = 1.00 ae,1 <∼ 0.0005 ae,2 = 0.0002 ae,3 = 0.000035

2.0 mm / 150 GHz
Beam Width θb = 16.0′′ θe,1 = 175′′ θe,2 = 280′′ θe,3 = 1500′′

θe/θb 10 17 95
Power Amplitude ab = 1.00 ae,1 <∼ 0.0015 ae,2 = 0.00055 ae,3 = 0.000055

1.3 mm / 230 GHz
Beam Width θb = 10.5′′ θe,1 = 125′′ θe,2 = 180′′ θe,3 = 950′′

θe/θb 12 17 90
Power Amplitude ab = 0.975 ae,1 <∼ 0.005 ae,2 = 0.001 ae,3 = 0.00009

0.86 mm / 350 GHz
Beam Width θb = 8.5′′ θe,1 = 85′′ θe,2 = 160′′ θe,3 = 580′′

θe/θb 10 19 70
Power Amplitude ab = 0.975 ae,1 <∼ 0.008 ae,2 = 0.002 ae,3 = 0.00025

a) The diffraction pattern AT is discussed in Sect. 5.
b) The 1st EB is a partially transient phenomenon which may show, in particular, a day–night time effect due to
residual transient thermal deformations.
The lower limits of σ1 and ae,1, under best conditions, are ∼1/2 of the listed values.
c) The values valid before July 1997 are larger by ∼40% (see Sect. 4); the values ae,1 and ae,3 remain unchanged.

priv. comm.) and the efficiency measurements of the plan-
ets (Kramer 1997), as it should be the case.

Figure 5 shows the widths θe and amplitudes ae of
the error beams as derived from the measurements and
calculated from Eqs. (11, 12) for ε0 = 0.62 (Greve et al.
1994c) and the correlation lengths Li and rms–values σi
determined above. This figure confirms the wavelength–
scaling of the error beams. When present, the wavelength–
scaling of the 1st error beam indicates that the associated
large–scale deformations behave like random deformations
with correlation length Ll = 2.5− 3.5 m, of which there
are approximately (D/Ll)

2 ≈ 50 elements covering the
aperture. This large number of deformation patches allows
the application of statistical calculations (Greve 1980).

3.4. The empirical correlation function

The wavefront errors (δϕ) derived from holography mea-
surements corrected for defocus and coma (see footnote 8)
are interpreted to be due to surface errors (δ) of the main
reflector. This surface error distribution [δ] can be used
to derive the surface error correlation function [Cδ] and
from this, in an independent way, the correlation length(s)
[L]. Holography measurements at 7 mm (43 GHz) wave-
length are regularly made at 43◦ elevation using the geo-
stationary satellite ITALSAT (Morris et al. 1996, 1997).
At this elevation the reflector surface is optimized and

free of homology deformations (Greve et al. 1998). We
derived the correlation function Cδ (Eq. (14)), shown in
Fig. 6, from 32×32 pixel holography measurements made
Oct. 1993, Mar. 1994, Nov. 1994, and from a 128 × 128
pixel holography measurement of 0.24 m (= D/128) spa-
tial resolution made Sep. 1996 (Morris et al. 1996). When
compared with Gaussian correlation length distributions
exp[−(d/L)2] (Eq. (9)), the empirical correlation functions
show clearly the influence of the panel frame misalignment
(2 in Fig. 6b), with correlation length La = 1.5−2.0 m, and
of the large–scale deformations (1 in Fig. 6b), with corre-
lation length Ll = 2.5−3.5 m. The resolution of the 128 ×
128 pixel holography map with one or two measurements
per correlation cell Lp = 0.3− 0.5 m is too low to clearly
indicate the Gaussian component of the panel deforma-
tions (3 in Fig. 6b). However, the panel surface errors of
correlation length Lp are clearly illustrated in Fig. 1.

3.5. The modified Ruze relation

The aperture efficiency εap of a reflector with several in-
dependent error distributions is (Ruze 1966; Shifrin 1971;
Baars 1973)

εap = ε(R)ap + ε(L)ap

= ε0 exp[−
∑

i
(σϕ,i)

2]+
∑

i
(1−exp[−(σϕ,i)

2])(Li/D)2(20)
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where

ε(R)ap = ε0 exp[−
∑

i
(σϕ,i)

2] = ε0 exp[−(σϕ)2] (21)

is the standard Ruze relation and ε(L)ap a correction
taking into account the scale of the surface errors. It
is evident from Eq. (20) that in particular large–scale
deformations (large L) contribute to ε(L)ap, increasing
the efficiency ε(R)ap. When using in Eqs. (20, 21) the
measured values (σi, Li) given in Table 1, and ε0 =
0.62, we find that in the wavelength region from 0.8 mm
to 3 mm the quantity ε(L)ap does not exceed 1 − 2%,
which is below the accuracy of the measurements. The
difference between the Ruze relation (L = 0) and the
complete expression Eq. (20) is so small so that the Ruze
relation can be used for evaluation of the 30–m reflector.

4. The current surface accuracy

We have presented in detail the data taken before
July 1997 since this complete set of multi–wavelength
Moon scans (Fig. 3) and corresponding beam parameters
(Fig. 5) illustrate that a consistent theory exists to
describe the beam degradation from several surface error
distributions. In this theory it is possible to anticipate
the structure of the beam pattern and the number of
beam components from details of the reflector surface
construction. Although it may be possible to approximate
the measurements by some other analytic function than
Eqs. (10, 16), the decomposition used here is consistent
with proven concepts of the antenna tolerance theory
and with the surface structure of the 30–m reflector. We
believe that the use of a priori knowledge of the beam
structure allows the derivation of meaningful parameters
of the error beams, in particular of very extended low
level error beams which are difficult to measure with high
precision. We believe also that the predictability of the
beam structure from details of the reflector construction
allows a meaningful estimate of the influence of surface
improvements, as done in the following.

It is evident from the 30–m reflector construction that
the correlation lengths Lp (panels, 3rd EB) and La (panel
frames, 2nd EB) are fixed quantities, hence also the widths
θe,p and θe,a of the corresponding error beams. Since
only panel frames can be adjusted, only the associated
rms–value σa may change, leading to the improved value
σ∗a. The associated change of the power amplitude ae,a

(Eq. (11), Fig. 5) of the corresponding 2nd error beam is

a∗e,a/ae,a = [1− exp(−σ∗ 2
ϕ,a)] / [1− exp(−σ2

ϕ,a)]. (22)

Approximately 80% of the power removed by the surface
adjustment from the error beam appears as an increase in
power of the diffracted main beam, the remaining ∼20%
appear in the sidelobe pattern (see Born & Wolf 1980).

Fig. 7. Composite profiles fM(u) which illustrate the improve-
ment of the reflector surface accuracy; measurements before
July 1997 (24 Dec. 1994): open circles, after July 1997 (19
Nov. 1997): solid dots

A holography measurement (Morris et al. 1997) has
shown that the panel frame adjustment of July 1997 has
improved9 the illumination weighted reflector surface ac-
curacy from σT = 0.075 − 0.085 mm to σ∗T = 0.065 −
0.075 mm. This general improvement is due to a reduc-
tion of the panel frame rms–value from σa,T ≈ 0.07 mm
to σ∗a,T ≈ 0.055 mm. Using Eq. (22), the associated reduc-
tion of the power amplitude of the 2nd error beam is a∗e,a
≡ a∗e,2 ≈ 0.6 ae,a.

In addition to the holography measurements, we con-
firmed the improvement of the reflector surface precision
from a measurement of the beam pattern and of the aper-
ture efficiency at 0.86 mm (350 GHz):

– at the lunar age of 21.3 days (∼ Last Quarter, 19
Nov. 1997) we obtained with the improved reflector a scan
across the Moon at 2 mm wavelength, and constructed
from this the composite profile shown in Fig. 7. From an
earlier observation we constructed a composite profile for
the lunar age of 19.6 days (24 Dec. 1994), also shown in
Fig. 7. The observations are sufficiently close in phase to
allow a comparison of both profiles (see the Appendix).
The improvement of the reflector surface is evident in
Fig. 7 as a reduction of the error beam.

– we derived in 1994 and 1998 the aperture efficiency
at 0.86 mm (350 GHz) from measurements of the planets,
using the same SIS receiver (see Table 2). The measured
increase of the aperture efficiency from ∼ 12% to ∼ 16%
(Table 2) agrees with the improvement of the reflector
surface.

9 The rms–values before July 1997 are (in mm): σ1 ≈ 0.03−
0.06, σa ≈ 0.07, σp ≈ 0.055 so that σT = Rσ = 0.075 – 0.085;
after July 1997 they are: σ1 ≈ 0.03 – 0.06, σa ≈ σp ≈ 0.055 so
that σT = Rσ = 0.065 − 0.075 (see Table 1).
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Fig. 8. IRAM 30–m telescope current beam pattern calculated from Eq. (16) and the parameters of Table 1. The heavy lines
show the case of a Gaussian approximation of the main beam (Eq. (23)). The accuracy of the profiles is ∼± 1 dB beyond the
main beam area. The beam patterns are shown on logarithmic scale (dB). For each wavelength the profile is normalized to 1/2
width of the full beam θfb (see Table 2)

Using these data, we proceeded in the following way to
arrive at representative parameters of the telescope perfor-
mance for the time after the July 1997 surface adjustment:

(1) we use the values θe and ae derived from the multi–
wavelength set of Moon scans (Fig. 5), but update the
values ae,2 = ae,a (panel frames, 2nd EB) by application
of Eq. (22) as explained above. In Eq. (22) we use the
values σa,T = 0.070 mm and σ∗a,T = 0.055 mm based on
the earlier and recent holography measurements (see
footnote 9).

(2) we use the holography measurement of the reflec-
tor surface precision (σ∗T) and of the 350 GHz aperture
efficiency to update the earlier efficiency data compiled
by Kramer (1997) from a large set of observations, as not
yet available for the improved reflector.

The current beam parameters are shown in Fig. 5 and
are given in Table 1; the current efficiencies are given in
Table 2.

5. The current beam pattern

Figure 8 shows the current beam pattern at 3.4 mm,
2.0 mm, and 1.3 mm wavelength calculated from Eq. (16)
and the values of Table 1. The values of Table 1, the curves
of Fig. 5, and Eqs. (11, 12) can be used to derive the pa-
rameters of the beam pattern for other wavelengths than
the reported measurements.

The calculation of the beam pattern requires a know-
ledge of the diffraction pattern AT. Without enter-
ing into lengthy calculations (see Minnett & Thomas

1968; Goldsmith 1987), the diffraction pattern of the
30–m telescope is obtained with sufficient accuracy,
when compared to measurements, from the approximation
AT(u) = α(u)A(u), with A(u) = [J1(u)/u]2 calculated
from the expressions given by Abramowitz & Stegun
(1972) and the reduction factor α(u) = 0.12, 0.22, 0.27 for
the 1st, 2nd, and 3rd sidelobe. In this calculation the beam
width (FWHP) of the Airy pattern A(u) is θb (Table 1)
at u = 1.62. As evident from Fig. 8, at the level of the 3rd
sidelobe the diffraction pattern and the error pattern have
similar intensities. The sidelobe structure and the error
beam seen in Fig. 8 are not observed in regular pointing
scans made with the 30–m telescope because the sensi-
tivity of the procedure is only −10 dB to −15 dB. The
sidelobe structure is also not seen in the composite Moon
scans (Figs. 3, 4) since this detail is lost in the convolution
(Eq. (18)).

In many applications the diffracted beam AT is ap-
proximated by a Gaussian main beam without sidelobes

AT ≈ GT = exp[−(θ /Θ)2] (23)

with Θ = θb/(2
√
ln 2) = 0.60 θb. Figure 8 shows also the

approximated Gaussian main beams.

6. The current efficiencies

The current efficiencies given in Table 2 are primarily
based on the measured illumination weighted rms–value
σ∗T. The aperture efficiency εap and the beam efficiency
Beff are related by Beff = 0.8899 [θb/(λ/D)]2 εap ≈ 1.20 εap
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Fig. 9. Relative power P (Ω) (Eq. (24)) received in the solid
angle Ω of opening θs given in fractions of the full beam width
θfb (Table 2). P (Ω) at θs/θfb = 1 is the beam efficiency Beff ;
the normalization of the curves is made to these values given
in Table 2. The values are shown for θs <∼ 1000 − 1400′′, i.e.
the extent of the profile measurements where also Feff ≈ εM
(Table 2). The remaining energy for larger angles θs is mainly
in the backward beam and is of the order 1− Feff

(Downes 1989), when assuming a Gaussian main beam
and using relation (1).

The relative power P (Ω) received in the on–axis solid
angle Ω of opening θs is

P (Ω) =
∑

i=0,3

∫ Ω

0

Fi(Ω
′)dΩ′ /

∑
i=0,3

∫ 4π

0

Fi(Ω
′)dΩ′(24)

In Eq. (24), F0 is the diffracted beam AT and F i (i =
1, 2, 3) are the error beams. When using the diffracted
Gaussian main beam GT we obtain for P (Ω) = P (θs/2)
the relation

P (Ω)=
∑

i=0,3
aiΘ

2
i[1− exp(−[(θs/2)/Θi]

2)] /
∑

aiΘ
2
i . (25)

The function P (Ω), based on the parameters of Table 1
and Table 2, is shown in Fig. 9 for λ = 3 mm, 2 mm, and
1.3 mm. In particular, the beam efficiency is Beff = P (Ωfb)
with Ωfb the solid angle of the full beam of diameter θfb

as given in Table 2.
For observations of extended sources it is important to

know the fraction of the power contained in the diffracted
beam and the error beams. The integrated relative power
Pi of the beam component [i] is

Pi =

∫ 4π

0

Fi(Ω)dΩ /
∑

i=0,3

∫ 4π

0

Fi(Ω)dΩ (26)

or when using the diffracted Gaussian main beam GT we
obtain

Pi = aiΘ
2
i /
∑

aiΘ
2
i . (27)

Table 2 gives the values Pi (i = 1, 2, 3) calculated from
Eq. (27) and the parameters of Table 1. The total power
contained in the error beams is Pe =

∑
Pi.

From the calibrated scans taken at New Moon
(Fig. 10a) and the temperature of the New Moon pub-
lished by Fedoseev & Chernyshev (1998) we derived the
Moon efficiency εM of which the values are given in

Table 2. The similarity of the values of the measured for-
ward efficiency (Feff , Table 2) and of the Moon efficiency
says that the forward beam has approximately the size of
the Moon’s disk. The similarity of the values also says that
the calculated beam pattern should not be used beyond
the off–axis distance of ∼ 700− 900′′, a fact we respected
in Fig. 8 and Fig. 9. It is evident that caution is required
when using Eq. (24)–Eq. (27) which imply integrations
over the full extent of the beam. The accuracy of the val-
ues P (Ω) and Pi (Fig. 9, Table 2) is a few percent.

7. Summary

1) For the analysis of the 30–m telescope beam we have
used the established method of total power scans across
the limb of the Moon. We did not apply a rigorous decon-
volution but instead obtained the beam parameters from
a more direct best–fit comparison between observed and
synthetic profiles. The method works well for measure-
ments around New Moon and Full Moon.

2) The antenna tolerance theory of several indepen-
dent large–scale and small–scale wavefront (reflector sur-
face) deformations provides a consistent description of the
30–m telescope beam. This theory makes use of the con-
cept of individual correlation lengths (Li) and individual
rms–values (σi) of the independent error distributions [δi].
An estimate of the correlation lengths can be obtained
from details of the reflector surface construction, in par-
ticular for a design of (mini–)panels and panel frames.

3) We find from the analysis of the 30–m reflector
that the Gaussian correlation length distribution is a
good representation of the actual situation. The observed
wavelength–scaling of the error beams gives confidence in
the correctness of the theoretical predictions and the em-
pirical values.

4) The effective rms–value of the wavefront (reflector
surface) is the root–square–sum of the individual rms–
values σi. As expected, this value agrees for the 30–m
reflector with the effective rms–value obtained from holo-
graphy data and efficiency measurements. Compared with
the errors of efficiency measurements, the standard Ruze
relation (for Li = 0) can be applied on the 30–m telescope
without loss of precision.

5) Any improvement of a paneled reflector surface with
several error distributions should act, if possible, on all er-
ror components which, however, dependent of the reflector
construction, may not always be possible. It is important
to consider also the correction of large–scale wavefront de-
formations (for instance by using adaptive optics, Greve
et al. 1996) which deform the central area of the beam
and which may contain a significant amount of the total
power.

6) Any further improvement of the 30–m reflector sur-
face can, at the present state, only be made by further
improvement of the panel frame adjustment. In this case,
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Table 2. Efficiency parameters of the IRAM 30–m telescope (after July 1997)

Wavel./Freq. θb θfb εap Beff Feff εM S/T ∗A P1(θe,1) P2(θe,2) P3(θe,3)
[mm]/[GHz] [′′] [′′] [%] [%] [%] [%] [Jy/K] [%] (′′) [%] (′′) [%] (′′)

3.4 / 88 27.5 ∼ 64 61 ± 3 73 ± 3 92 ± 2 94 ± 4 5.9 ± 0.3 2−4 (300) 3 (410) 20 (2500)
2.0 / 150 16.0 ∼ 38 45 ± 3 54 ± 3 90 ± 2 92 ± 4 7.8 ± 0.5 5−10 (175) 8 (280) 25 (1500)
1.3 / 230 10.5 ∼ 25 35 ± 3 42 ± 3 86 ± 2 85 ± 4 9.7 ± 0.9 10−20 (125) 12 (180) 26 (950)

[0.86 / 350 8.5 ∼ 20 16 ± 4 19 ± 4 75 ± 3 22 ± 3 15−25 (85) 20 (160) 30 (580)] ∗)

Update from the values compiled by Kramer (1997).
The entries of the Table are:
θb: beam width (FWHP) (measured); θfb: full width (to first minimum), θfb ≈ 2.4 θb (calculated);
εap: aperture efficiency (measured & calculated from σ∗T); Beff : main beam efficiency, Beff ≈ 1.20 εap;
Feff : forward efficiency (from sky dips), εM: Moon efficiency (measured);
S/T ∗A = (2k/A)Feff/εap = 3.906Feff/εap: antenna gain (calculated & measured).
P1 − P3: relative power of the error beams (calculated). The accuracy of the values is ∼± 5%. The entries of P1

illustrate the partially transient nature of this error beam. In brackets are given the widths (FWHP) of the
corresponding error beams.
* Not frequently used frequency and somewhat poorly known telescope performance.
The values valid before July 1997 are published by Kramer (1997) and are found in the 30–m Telescope Manual (Wild).

the parameters of the improved beam are obtained in
the way as outlined in Sect. 4, supported by Moon scan
measurements.

Appendix A: Limb scans at various phases of the Moon

For the analysis of the beam structure we have used scans
across the Moon taken around New Moon and Full Moon.
In order to derive in an empirical way the parameters
of the beam pattern, we have constructed from the ob-
served total power scans PM(u) the differentiated, com-
posite profiles fM(u) which we compared with synthetic
profiles fS(u) (Eq. (19)), obtained from synthetic total
power scans PS(u) (Eq. (18)). There are two reasons for
selecting observations around New Moon (day time) and
Full Moon (night time): (a) at these phases the Moon’s
brightness distribution is symmetric with respect to its
center and easily cast into an analytic form (Eq. (17))
for calculation of the synthetic profiles PS(u) and fS(u);
(b) the observed total power scans PM(u) and the differ-
entiated scans fM(u) are identical for any scan direction
through the center of the Moon so that opposite sides
of the limb can be used to construct a composite profile
fM(u). Both segments of a composite profile are normal-
ized at their center.

We illustrate these remarks with observations.
Figure 10a shows 2 mm wavelength total power scans
at different phases of the Moon. In these observations,
one scan passes through the subsolar point and the center
(∼ EW direction at culmination); the other scan is made
in orthogonal direction. The figure shows the symmetric
brightness distribution around New Moon (age ≈ 0 days)
and Full Moon (age ≈ 15 days). As shown in Fig. 10b and
Fig. 10c, at these phases the profiles fM(East limb) and
fM(West limb) are comparable so that the measurements

at opposite limbs can be used to construct a composite
profile fM(u), as done above (see Figs. 3, 4). We find em-
pirically that the difference of the profile sections fM(East)
and fM(West) is below ∼ 1 dB, and hence below the accu-
racy of the measurements, for observations within ∼ ± 1
day of New Moon and Full Moon. Also, at these phases
of the Moon the unbalance of the profiles because of tem-
perature gradients across the Moon and limb darkening
is smaller than the accuracy of the measurements. From
observed and synthesized scans we find that the compos-
ite profiles are identical for measurements at New Moon
and Full Moon (see Fig. 10c). This allows a comparison
of profiles taken at New Moon and Full Moon, as done
in Fig. 4. We find also that profiles taken in u–direction
or v–direction are similar within ∼± 1 dB when taken
within ∼± 1 day of a certain phase, as used in Fig. 7.

The brightness distribution at other phases of the
Moon than New Moon and Full Moon shows a more or
less steep gradient and a more or less pronounced cres-
cent (Fig. 10a). The disadvantage of using for the ana-
lysis other phases than New Moon and Full Moon lies in
the fact that the available models (Krotikov & Troitskii
1964; Linsky 1966, 1973; Mangum 1993) for calculation of
the Moon’s millimeter wavelength brightness distribution
T0Π(u, v) (Eqs. (17, 18)) are not sufficiently precise, and
mathematically cumbersome, to produce reliable synthetic
profiles PS(u) and fS(u) for comparison with observations.

The mm–wavelength radiation from the edge of the
Moon is polarized in radial direction by ∼1% at 1.3 mm
(Barvainis et al. 1988). This is a small and systematic
effect and need not be considered in the profile analysis,
even when using polarized feeds.

Acknowledgements. The holography data were kindly made
available by D. Morris. The holography data of 1996 and
1997 were obtained in a larger IRAM campaign including the
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Fig. 10. a) Observed (before July 1997) total power scans at 2 mm wavelength; West is to the right, East to the left. The age
of the Moon is indicated as days after New Moon (scans of the last half of the lunar cycle are similar, with the EW direction
inverted). The profiles show scans PM(u) through the subsolar point (i.e. ∼ EW direction at culmination) and the center of
the Moon (thick line), and scans in orthogonal direction (thin line). Only scans at New Moon and Full Moon are symmetric.
b) Moon scans differentiated along ∼ EW direction, i.e. fM(u) = dPM(u)/du. c) Sections of the composite profile fM with
fM(West): solid dots, fM(East): open circles (folded around the beam axis)

collaboration of D. Morris, J. Lamb, B. Lazareff, M. Carter,
F. Mattiocco, and the staff of IRAM–Granada. D. Teyssier of
IRAM–Granada made the new measurements used in Fig. 7; A.
Karpov (IRAM) provided and operated the 350 GHz receiver.
The data of Fig. 1 are taken from the ARGE–Krupp–MAN
documentation of the telescope. We appreciated the discussions
with D. Morris and B. Lazareff, and the pointed comments of
D. Downes (IRAM) and the referee, R.E. Hills.
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Väisälä Y., 1922, Ann. Univ. Finnicae Aboensis, Turku, Ser A

1, No. 2
Vu T.B., 1969, Proc. IEE 116, 195
Vu T.B., 1970a, Int. J. Electron. 29, 165
Whyborn N.D., Morris D., 1995, Experim. Astron. 6, 43


