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Solar image segmentation by use of mean field fast annealing
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Abstract. We present a “continuous” analysis of a solar
Hα image in order to address the problem of image seg-
mentation. Our approach is based on combinatorial opti-
mization methods and in particular on Mean Field Fast
Annealing (MFFA). Mean-field theory gives a determinis-
tic nature to our algorithm while its efficiency is improved
by a fast cooling schedule. We show how this method can
be used to separate efficiently the regions of different solar
activity giving a tool for a future automated recognition
and classification of sunspots.
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1. Introduction

Sunspots and sunspot groups are the most conspicuous
features of solar activity. They appear as dark areas in
the photosphere of the sun, with sizes and numbers that
vary in the 11-year cycle and they are caused by a lower
surface temperature.
The area covered by the sunspot is one of the most relevant
parameters used to investigate the solar activity since the
sunspot number is only an empirical index. In many occa-
sions a phase delay between the value of the sunspot num-
ber and the projected areas of sunspots has been observed
(e.g. Pap 1985). There is some recent evidence pointing to
a relation between magnetic field strength, continuum in-
tensity and sunspot size (Collados et al. 1994). The ratio of
the sunspot and facular areas is linked with the age of the
active regions (young or old sunspot groups) (Pap 1985).
The energy balance of individual active regions seems to
depend mainly on the area ratio of the plage and the cor-
responding sunspot group (Steinegger et al. 1996). During
the solar minimum, when only a few active regions exist
on the Sun, the main contribution to the irradiance vari-
ations arises from the active network, which is formed by
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the breakup and dispersion of the active regions (Fröhlich
& Pap 1989).
The determination of sunspot area becomes more compli-
cated when one attempts to separate the individual areas
of umbra and penumbra. Steinegger et al. (1997) com-
pare two methods of measuring sunspot areas from pho-
tospheric observations; one based on histogram modifica-
tions and a new method termed inflexion point method
(IPM).
Therefore, it is of great importance to isolate the basic
characteristics of the sunspot or sunspot group, in order
to compare them with active regions and to study the
results of solar activity. In Hα, the chromosphere is par-
ticularly bright and the matter is apparently dominated
by the chromospheric magnetic field lines.
The purpose of segmentation is to divide the image into
meaningful regions that correspond to structural units in
the scene or distinguish objects of interest. In this case it
could be useful if one wants to isolate automatically the
basic characteristics of the sunspot or sunspot group and
study their relation with solar activity using Hα observa-
tions.
The segmentation is separated here in two stages, the clas-
sification in q labels (Sect. 2) and the relaxation labeling
process (Sect. 3).

2. Observations and data reduction

The Hα observations used in this work were taken at
Sacramento Peak Observatory on December 14, 1996. Our
image (Fig. 1) has dimensions 128×128 pixels with 42 dif-
ferent intensities. The minimum value is 32 and the max-
imum is 222. The resolution is 0.4 arcsec/pixel and thus
our image contains an area of 51.2×51.2 arcsec2. As a first
step we sharpen this image to enhance the local contrast
by convolving it with the following template: −1 −2 −1
−2 13 −2
−1 −2 −1

 ·
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Fig. 1. Selected sunspot image (128 × 128) containing an area
of 51.2 × 51.2 arcsec2

Fig. 2. Sunspot image (128 × 128) after sharpening of Fig. 1
with template of Sect. 2

The new image (Fig. 2) has a minimum of −20 and a maxi-
mum of 330. Let I(x, y) be our image matrix of pixel inten-
sities of (x, y) (Fig. 1). The image after sharpening (Fig. 2)
has intensities I1(x, y). Let now M = max (I1(x, y)) and
m = min (I1(x, y)). We reduce our image (Fig. 2) into q
classes (Figs. 3, 4) using the following equation:

I2(x, y) = int

(
I1(x, y)−m

M−m
(q − 1)

)
. (1)

Fig. 3. Sunspot image (128 × 128) after application of Eq. (1)
in Fig. 2 with q = 4 labels

Fig. 4. Sunspot image (128 × 128) after application of Eq. (1)
in Fig. 2 with q = 8 labels

3. Relaxation labeling process

Our sunspot image is taken at the center of Hα. Our pur-
pose is to divide the image into regions of different activity
(e.g., umbra, penumbra, active regions) and therefore the
problem now is reduced in a relaxation labeling process.
Relaxation labeling processes were originally developed
to reduce ambiguity and noise and select the best label
among several possible choices in vision systems (Hummel
& Zucker 1983). We consider it as a particular case of
combinatorial optimization problems (e.g., Titterington
1985; Jeffrey & Rosner 1986) for which the cost function
corresponds to the global energy of a complex physical
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system (e.g., Carnevali et al. 1985; Hiriyannaiah et al.
1989; Bilbro et al. 1991; Hérault & Horaud 1993; Bratsolis
& Sigelle 1997).

3.1. Potts interaction

Let I = {0, 1, . . . q− 1} be the set of gray levels (labels or
classes). A label random variable ls is associated for each
site s ∈ S = {1, 2 . . .N}, where N is the number of pixels.
The true distribution of ls is unknown, but based on some
measurements, a probability distribution P (ls): I 7→ [0, 1]
is estimated for such a random variable.
Real images are often inhomogeneous, with nearly uniform
regions separated by relatively sharp edges. To get round
this problem, local energy functions have been introduced.
To express the local properties of an image, a neighbor-
hood system of r-pixels is defined as a collection of pixels
that are assumed to interact directly with s-pixel. A basic
characteristic of most images is that intensity values at
neighbor locations r and s are likely to be similar (e.g.,
Besag 1974; Besag 1986).
The Hamiltonian of our system is the cost function of the
lattice. Using some ideas from Statistical Physics, we can
use a Potts potential interaction model Urs (Wu 1982;
Bratsolis & Sigelle 1997).

Urs = −K
q − 1

q
(ûs . ûr)−

K

q
+
K

2
(2)

where K is a constant and ûs, ûr random (unit) vectors
at sites s, r under a (q− 1)-dimensional space with values
in R.

3.2. Mean-field theory

One of the basic ideas of the mean-field approximation,
is to find the best linear approximation, in a statistical
sense, of a Hamiltonian expression. So, Eq. (2) is written
up to a constant,

Urs = −β{ûs . E(ûr) + ûr . E(ûs)−E(ûs) . E(ûr)

+ [ûs −E(ûr)] . [ûr −E(ûs)]} (3)

where β = K
q − 1

q
, E(ûs) the expected value of vector

ûs. and E(ûr) the expected value of vector ûr. Using
mean-field theory, we consider only the first two terms
of Eq. (3). Each local energy function is thus approxi-
mated by a sum of first-order clique potentials, leading to
a quasi-independent vector approximation.
The total energy of the Potts model with mean-field ap-
proximation up to a constant is:

U = −β
∑
(s,r)

ûs . ûr ≈ −β
∑
s∈S

ûs .

∑
r∈Ns

E(ûr)

 (4)

or

U = −
∑
s∈S

hs . ûs (5)

where hs = β
∑
r∈Ns E(ûr) is the effective magnetic field

(in physical sense) produced by neighbors of site s and
Ns the set of the r-neighbors of the site s. There is no
link between the effective magnetic field hs and sunspot
magnetic field.
Calling now Ns the configuration of these neighbor sites,
we have

E(ûs) =

q−1∑
k=0

P (ûs = v̂k)v̂k =

q−1∑
k=0

P (ûs = v̂k / Ns)v̂k. (6)

Here P (ûs = v̂k / Ns) is simultaneously the local and
global Gibbs-Boltzmann distribution ûs, on account of
our assumption of vector variables independence. The ex-
pected value of vector ûs at site s is then computed as

E(ûs) =

q−1∑
k=0

v̂k exp

β
T

∑
r∈Ns

v̂k . E(ûr)


q−1∑
k=0

exp

 β
T

∑
r∈Ns

v̂k . E(ûr)

 ∀s ∈ S. (7)

Equation (7) gives rise to a self-consistent nonlinear
dynamical system of q equations, where T > 0 is a pa-
rameter at our disposal and, in physical terms, represents
the “absolute temperature” of the system. The strict
relationship between Markov random-field hypothesis
is evident. An extended mathematical description of
Potts interaction with mean-field approximation is in
Bratsolis & Sigelle (1997). The mean-field equations in a
probabilistic interpretation in iterative form is given by:

[P (ls = i)]new

=

exp

 1

T

∑
r∈Ns

Krs
ii [P (lr = i)]old +Bδ(l0s , i)




q−1∑
k=0

exp

 1

T

∑
r∈Ns

Krs
kk [P (lr = k)]old +Bδ(l0s , k)


 (8)

∀ i ∈ I, ∀ s ∈ S
where P (ls = i) is the probability for the label of the site
s to be at the state i, Krs

ii are the potential coefficients as
elements of a diagonal matrix (in image processing plays
the role of a smoothness factor), B is the external field
(here plays the role of a roughness factor) and l0s is the
initial label of the site s, new refers to instant t + 1 and
old to instant t.
In the simplest case we take K as a scalar and we have:
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Fig. 5. Results of MFFA after a misclassification of 35% of pix-
els by adding uniform channel noise on this image (128× 128)
with q = 4, K = 1.0 and B = 1.0. The number of sweeps is
k = 8. Up Left: Artificial image. Up Right: Degraded chan-
nel noisy image. Down Left: Relaxation result. Down Right:
Classification error as number of steps

[P (ls = i)]new

=

exp

 1

T

K ∑
r∈Ns

[P (lr = i)]old +Bδ(l0s , i)




q−1∑
k=0

exp

 1

T

K ∑
r∈Ns

[P (lr = k)]old +Bδ(l0s , k)


 (9)

∀ i ∈ I, ∀ s ∈ S .

3.3. Label changes and critical temperature

Combinatorial optimization problems having multiple
conflicting constraints are called ill-posed or nonconvex.
Nonconvex problems typically have numerous suboptimal
solutions manifested as local minima in the energy func-
tion. The powerful tool of simulated annealing, which, in
theory, eventually converges to an optimal solution, has
been applied to a variety of nonconvex combinatorial op-
timization problems. The control parameter T takes an
initial value To. The deterministic nature of mean-field
method acts on the system so that the major part of label
changes occur in a small temperature region below criti-
cal temperature Tc. The temperature T here is a param-
eter that reduced following a cooling schedule. Thus it’s
enough to start mean field annealing at some temperature

Fig. 6. Sunspot image (128 × 128) of Fig. 3 after MFFA appli-
cation. The labels now are three. Labels of too small isolated
areas are disappeared

To a little higher than Tc in order to reach convergence.
There is no link between the parameters To and Tc and
the measured solar temperatures.

Simulated annealing algorithm reaches an optimal
configuration the same way the annealing process of
a solid does into its (globally) lowest energy state. In
Conventional Simulated Annealing (Geman & Geman
1984) there is an initial temperature To such that at step k

we have T (k) =
To

log(k)
. A similar technique developed by

Szu & Hartley (1987) employs the following Fast Cooling

Schedule: T (k) =
To

k
. Both temperature schedules have

been tested within our deterministic frame, leading to very
similar results (Bratsolis & Sigelle 1997). The composi-
tion of probabilistic mean-field approximation with the
fast cooling schedule gives the following Mean Field Fast
Annealing (MFFA) algorithm.

3.4. The MFFA algorithm

This algorithm propose a relaxation labeling process.
MFFA algorithm (with K as a scalar), (Figs. 5, 6, 7).

1. Define klimit: number of sweeps, and To: initial temper-
ature.
2. Initialize q buffers of size N with P (ls = i) = 10−5 ∀i ∈
I, ∀s ∈ S.

3. For k = 1...klimit T =
To

k
Use [Eq. (9)].

4. If k = klimit Round off and display taking ls =
arg max

i∈I
P (ls = i).

Taking K = 1.0 and B = 1.0 in four-connectivity, i.e.,
the neighborhood of the site s contains the four nearest
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Fig. 7. Sunspot image (128×128) of Fig. 4 after MFFA applica-
tion. The labels now are six. Labels of too small isolated areas
are disappeared

pixels, experimental tests give (Bratsolis & Sigelle 1997)
for q = 4, Tc = 1.92 and for q = 8, Tc = 1.36. In any case
we accept To ' 2Tc.

4. Results and discussion

We want to quantize an image into nicely connected areas,
so that isolated pixels, or small isolated areas with a gray
level different from their background can be eliminated.

As far as dynamics is concerned, we choose a serial
mode in which the local field, in each site, is computed
immediately before the corresponding site state is up-
dated. We use raster examination, starting at each sweep
from the upper left image pixel and finishing with the
lower one. When the system converges we display, taking
for every site s, the maximal probability from every state
q.
With N sites and q label values (gray levels), MFFA
needs O(qN) updates at a fixed temperature while the
stochastic Simulated Annealing requires O[(qN )2] such
steps (Acton & Bovik 1996; Bratsolis & Sigelle 1997).
Hα images are usually so complicated that a simple
histogram modification is not sufficient to separate the re-
gions of different activity. In this paper we have presented
a method of combinatorial optimization to separate our
image in different classes. Previous methods used in
photospheric images (e.g. Steinegger et al. 1997), separate
the images in three classes - umbra, penumbra and pho-
tospheric background - for the measure of sunspot areas.

Here we have described how MFFA can be used as a
method of segmentation of images previously classified in
any number of classes. We have considered a synthetic ex-
ample in which degradation arose through the simple su-
perposition of uniform label channel noise. After a small
number of sweeps (eight in our case) we obtain very good
results.

The importance of solar image segmentation is evi-
dent because the knowledge of the spatial (on the solar
disk) and time variability of sunspots, faculae, network
and quiet-Sun is essential to understand the solar cycle
(Steinegger et al. 1996). The segmentations of solar im-
ages could be considered as a first stage of automated
recognition and classification of sunspots, something that
we intend to investigate in future work.
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