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Abstract. In the context of assessing and characteriz-
ing structures in X-ray images, we compare different ap-
proaches. Most often the intensity level is very low and
necessitates a special treatment of Poisson statistics. The
method based on wavelet function histogram is shown
to be the most reliable one. We also present a multi-
resolution filtering method based on the wavelet coef-
ficients detection. Comparative results are presented by
means of a simulated cluster of galaxies.
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1. Introduction

The ability of detecting structures in X-ray image of celes-
tial objects is crucial, but the task is highly complicated
due to the low photon flux, typically from 0.1 to a few
photons per pixel. Point sources detection can be done
by fitting the Point Spread Function, but this method
does not allow extended sources detection. One way of
detecting extended features in a image is to convolve it by
a Gaussian. This increases the signal to noise ratio, but
at the same time, the resolution is degraded. The VTP
method (Scharf et al. 1997) allows detection of extended
objects, but it is not adapted for the detection of sub-
structures. Furthermore, in some cases, an extended ob-
ject can be detected as a set of point sources (Scharf et al.
1997). The wavelet transform (WT) has been introduced
(Slezak et al. 1990) and presents considerable advantages
compared to traditional methods. The key point is that
the wavelet transform is able to discriminate structures
as a function of scale, and thus is well suited to detect
small scale structures embedded within larger scale fea-
tures. Hence, WT has been used for clusters and sub-
clusters analysis (Slezak et al. 1994; Grebenev et al. 1995;
Rosati et al. 1995; Biviano et al. 1996), and has also al-
lowed the discovery of a long, linear filamentary feature

extended over approximatily 1 Mpc from the Coma clus-
ter toward NGC 4911 (Vikhlinin et al. 1996). In the first
analyses of images by the wavelet transform, the Mexican
hat was used. The method simply consists in applying the
correlation product between the image I and the wavelet
function:
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Where a is the scale parameter. By varying a, we obtain a
set of images, each one corresponding to the wavelet coef-
ficients of the data at a given scale. The wavelet function
corresponding to the Mexican hat is
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More recently the à trous wavelet transform algorithm
has been used because it allows an easy reconstruction
(Slezak et al. 1994; Vikhlinin et al. 1996). By this algo-
rithm, an image I(x, y) can be decomposed into a set
(w1, ..., wn, cn),

I(x, y) = cn(x, y) +
n∑
j=1

wj(x, y). (3)

Several statistical models have been used in order to
say if a X-ray wavelet coefficient wj(x, y) is significant, i.e.
not due to the noise. In Viklinin et al. (1996), the detection
level at a given scale is obtained by an hypothesis that the
local noise follows a Gaussian noise. In Slezak et al. (1994),
the Anscombe transform was used in order to transform
an image with a Poisson noise into an image with a
Gaussian noise. Other approaches have also been proposed
using k sigma clipping on the wavelet scales (Bijaoui &
Giudicelli 1991), simulations (Slezak et al. 1990; Escalera
& Mazure 1992, Grebenev et al. 1995), a background es-
timation (Damiani et al. 1996; Freeman et al. 1996), or
the histogram of the wavelet function (Slezak et al. 1993;
Bury 1995).

We discuss and compare in this paper the different
methods for signal detection using the à trous wavelet
transform algorithm and present how X-ray images can
be restored even in the case of very low photon flux.
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2. Detection level estimation in the wavelet space

2.1. Model and simulation

Simulations can be used for deriving the probability that
a wavelet coefficient is not due to the noise (Escalera et al.
1992). Modeling a sky image (i.e. uniform distribution and
Poisson noise) allows determination of the wavelet coeffi-
cient distribution and derivation of a detection threshold.
For substructure detection in a cluster, the large structure
of the cluster must be first modeled, otherwise noise pho-
tons related by the large scale structure will introduce false
detections at lower scales. If we have a physical model,
Monte Carlo simulations can also be used (Escalera &
Mazure 1992; Grebenev et al. 1995), but this approach re-
quires a long computation time, and the detections will al-
ways be model-dependent. Damiani et al. (1996), and also
Freeman et al. (1996) propose to calculate the background
from the data in order to derive the fluctuations due to
the noise in the wavelet scales. It is regretable to have to
do this, because we lose one the main advantage of the
use of the wavelet transform, which is to be background-
free. Indeed, wavelet coefficients have a null mean, and the
detection is just done by comparison to a given thresh-
old. Furthermore, background estimation is not an easy
task, and generally requires several steps (filtering, inter-
polation, etc), and error estimation on the background is
generally difficult to calculate.

2.2. Sigma clipping

A straightforward method, initially proposed by (Bijaoui
& Giudicelli 1991), for deriving the detection levels at each
scale is to apply a sigma clipping at each scale. Therefore
a standard deviation σj is estimated at each scale j, and
wavelet coefficients wj(x, y) are considered as significant
if

| wj(x, y) |> kσj (4)

where k is generally taken equal to 3. This method allows
us to easily detect strong features, but is certainly not op-
timal for detection of weak objects. Indeed, as the noise is
not Gaussian, it is difficult to estimate the real probability
of false detection using this kσ detection criterion.

2.3. Local Gaussian noise

Vikhlinin et al. (1995) proposed to assume a Gaussian lo-
cal noise, and to estimate the map Iσ(x, y) from the the
local background. The standard deviation σj(x, y) related
to a wavelet coefficient wj(x, y) is derived from Iσ(x, y)
using the property of linearity of the wavelet transform
(Starck & Bijaoui 1994). As previously, the hypothesis is
not true, and the consequence is the same. A solution is to
use Monte Carlo simulations to set the correspondence be-
tween the standard deviation of a wavelet coefficient and
the levels of significance (Grebenev et al. 1995), but the

simulations must be performed for each image because the
significance levels vary strongly with the number of pho-
tons (Grebenev et al. 1995).

2.4. Anscombe transform

In Slezak et al. (1994) and Biviano et al. (1996), the
Anscombe transform

t(I(x, y)) = 2

√
I(x, y) +

2

3
(5)

has been used and acts as if the data arose from a Gaussian
noise with white model, with σ = 1, under the assump-
tion that the mean value of I is large. Simulations have
shown (Murtagh et al. 1995) that a number of photons
less than 30 per pixel introduces a bias. In X-ray images,
the number of photons is often lower, and sometimes can
even be equal to zero. Using Anscombe transform in this
case will introduce an over estimation of the noise level.
To overcome this difficulty, the noise standard deviation
can be reestimated, for instance as in (Slezak et al. 1994)
i.e. by applying a sigma clipping at the first scale of the
wavelet transform. However, this approach assumes that
the noise is homogeneous, which is not true. Indeed, if the
number of photons per pixel is lower that 30, the standard
deviation of noise after Anscombe transformation, is vary-
ing strongly with the number of photons (Murtagh et al.
1995).

2.5. Wavelet function histogram

An approach for very small numbers of counts, includ-
ing frequent zero cases, has been described in Slezak et al.
(1993) and Bury (1994), for large scale clustering of galax-
ies. We have adopted here the same approach to analyze
X-ray images.

A wavelet coefficient at a given position and at a given
scale j is

wj(x, y) =
∑
k∈K

nkψ(
xk − x

2j
,
yk − y

2j
) (6)

where K is the support of the wavelet function ψ (i.e. the
box in which ψ is not equal to 0) and nk is the number
of events which contribute to the calculation of wj(x, y)
(i.e. the number of photons included in the support of the
dilated wavelet centered at (x,y)).

If a wavelet coefficient wj(x, y) is due to the noise, it
can be considered as a realization of the sum

∑
k∈K nk of

independent random variables with the same distribution
as that of the wavelet function (nk being the number of
photons or events used for the calculation of wj(x, y)).
Then we compare the wavelet coefficient of the data to
the values which can taken by the sum of n independent
variables.

The distribution of one event in the wavelet space is
directly given by the histogram H1 of the wavelet ψ. Since
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independent events are considered, the distribution of the
random variable Wn (to be associated with a wavelet coef-
ficient) related to n events is given by n autoconvolutions
of H1

Hn = H1 ⊗H1 ⊗ ...⊗H1. (7)

Figure 1 shows the shape of a set ofHn. For a large number
of events, Hn converges to a Gaussian.

In order to facilitate the comparisons, the variable Wn

of distribution Hn is reduced by

c =
Wn −E(Wn)

σ(Wn)
. (8)

E being the mathematical expectation, and the cumula-
tive distribution function is

Fn(c) =

∫ c

−∞
Hn(u)du. (9)

From Fn, we derive cmin and cmax such that F (cmin) =
ε and F (cmax) = 1− ε.

Let us define a reduced wavelet coefficient as

wrj (x, y) =
wj(x, y)
√
nσψj

(10)

=
wj(x, y)
√
nσψ

4j (11)

where σψ is the standard deviation of the wavelet func-
tion, σψj is the standard deviation of the dilated wavelet
function (σψj = σψ/4

j), and wj(x, y) a wavelet coefficient
obtained using the à trous wavelet transform algorithm.

Therefore a reduced wavelet coefficient, wrj (x, y), cal-
culated from wj(x, y), and resulting from n photons or
counts is significant if:

F (wr) > cmax (12)

or

F (wr) < cmin. (13)

This detection method presents several advantages: it
is independent of any model, no simulation is needed, and
it is theoretically rigorous.

3. Image filtering

We propose here to filter an image using the multireso-
lution support, which is determined from the significant
wavelet coefficients (i.e. coefficient which are not due to
the noise).

3.1. Multiresolution support

A multiresolution support of an image describes in a
logical or Boolean way if an image I contains informa-
tion at a given scale j and at a given position (x, y). If
M (I)(j, x, y) = 1 (or = true), then I contains informa-
tion at scale j and at the position (x, y). M depends on
several parameters:

– The input image.
– The algorithm used for the multiresolution decompo-

sition.
– The noise.
– All additional constraints we want the support to sat-

isfy.

Such a support results from the data, the treatment (noise
estimation, etc.), and from knowledge on our part of the
objects contained in the data (size of objects, linearity,
etc.). In the most general case, a priori information is not
available to us.

The multiresolution support of an image is computed
in several steps:

– Step one is to compute the wavelet transform of the
image.

– Binarization of each scale leads to the multiresolution
support (the binarization of an image consists in as-
signing to each pixel a value only equal to 0 or 1).

– A priori knowledge can be introduced by modifying
the support.

This last step depends on the knowledge we have of our
images. For instance, if we know there is no interesting
object smaller or larger than a given size in our image,
we can suppress, in the support, anything which is due to
that kind of object. This can often be done conveniently by
the use of mathematical morphology. In the most general
setting, we naturally have no information to add to the
multiresolution support.

The multiresolution support will be obtained by de-
tecting at each scale the significant coefficients. The mul-
tiresolution support is defined by:

M(j, x, y) =

{
1 if wj(x, y) is significant
0 if wj(x, y) is not significant.

(14)

3.2. Hard thresholding

In the previous section, we have shown how to detect sig-
nificant structures in the wavelet scales. A simple filter-
ing can be achieved by thresholding the non-significant
wavelet coefficients, and by reconstructing the filtered im-
age by the inverse wavelet transform. In the case of the
à trous wavelet transform algorithm, the reconstruction is
obtained by a simple addition of the wavelet scales and
the last smoothed array. The solution S is

S(x, y) = c(I)p (x, y) +

p∑
j=1

M(j, x, y)w
(I)
j (x, y) (15)

where w
(I)
j are the wavelet coefficient of the input data,

and M is the multiresolution support.

3.3. Iterative thresholding

As the à trous wavelet transform algorithm is a non
orthogonal wavelet transform algorithm, the wavelet



400 J.-L. Starck and M. Pierre: Structure detection in low intensity X-ray images

Histograms 

-2 -1 0 1 2
Reduced Coefficients

0.00

0.10

0.20

0.30

0.40

P
ro

po
rt

io
n

 1 event

 2 events

Histograms 

-3 -2 -1 0 1 2 3
Reduced Coefficients

0.000

0.005

0.010

0.015

0.020

0.025

P
ro

po
rt

io
n

 4 events

 8 events

 16 events

 32 events

 64 events

Histograms 

-3 -2 -1 0 1 2 3
Reduced Coefficients

0.00

0.10

0.20

0.30

0.40

0.50

P
ro

po
rt

io
n

 128 events

 256 events

 512 events

 1024 events

 2048 events

Histogram 

-4 -2 0 2 4
Reduced Coefficients

0.00

0.10

0.20

0.30

0.40

 4096 events

Fig. 1. Autoconvolution histograms for the wavelet associated with a B3 spline scaling function for 1 and 2 events (top left), 4
to 64 events (top right), 128 to 2048 (bottom left), and 4096 (bottom right)

transform of the solution S does not produce wavelet

coefficients w
(S)
j (x, y) which are exactly equal to

M(j, x, y)w
(I)
j (x, y). This is evidently not a problem

for wavelet coefficients where nothing was detected
(M(j, x, y) = 0), but it means that an error has been
introduced during the reconstruction of objects from the
significant structures. This can be corrected using an iter-
ative method (Starck et al. 1995). If a wavelet coefficient
of the original image is significant, then the multireso-

lution coefficient of the residual image (i.e. w
(R(n))
j with

R = I−S) must be equal to zero. This is obtained by the
following iteration:

Sk+1(x, y) = Sk(x, y) + c(R)
p (x, y)

+

p∑
j=1

M(j, x, y)w
(R)
j (x, y). (16)

Thus the regions of the image which contain significant
structures at all levels are not modified by the filtering.
The residual will contain the value zero over all of these
regions. If an object is close to another one, which has the
same size and has a stronger flux, it is possible that we will
not detect it because of the negative component around
the detected structure of the second object (this is due
to fact that a wavelet function has null mean). But after
one or two iterations, the solution will contain the second
object, and the residual will contain only the first one.
This means that the wavelet coefficient (obtained from the
residual) of the first object will no longer be masked by
the second. The multiresolution support can be updated
by reducing the wavelet coefficient of the residual image
(see 11), and applying both comparison tests of Eq. (12)
and Eq. (13). Note that cmin and cmax are not recomputed,
because the detection level is unchanged.

The algorithm becomes:
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Fig. 2. Left, simulated image. The central luminosity is equal to 12, and the two first isophots are at 1 and 2.62. Right, same
image with a Poisson noise

1. k ← 0.
2. Initialize the solution, I(0), to zero.
3. Determine the multiresolution support of the image.
4. Determine the residual, R(k) = I − S(k).
5. Update the multiresolution support of the image.
6. Determine the wavelet transform w(R) of R(k).
7. Threshold: only retain the coefficients which belong to

the support.
8. Reconstruct the thresholded residual image. This

yields the image S̃(k) containing the significant resid-
uals of the residual image.

9. Add this thresholding residual to the solution: S(k) ←
S(k) + S̃(k).

10. If | (σR(k−1) − σR(k))/σR(k) | > ε then k ← k + 1 and
go to 4.

A positivity constraint can be introduced in the algorithm
by thresholding at each iteration negative values in the
solution S. The multiresolution can also be updated, fol-
lowing each iteration, using the wavelet coefficients of the
residual image:

M (n+1)(j, x, y) =


1 if w

(R)
j (x, y) is significant

or M (n)(j, x, y) = 1

0 if w
(R)
j (x, y) is not significant

and M (n)(j, x, y) = 0.

(17)

This is of interest when an object is hidden by another one.
It appends each time a faint object is close to a stronger
one. Then the faint object is undetectable due to the neg-
ative coefficients which surrounded the strong one. But
after one or two iterations, the strong object does not af-
fect the residual, and the faint object may be appear in
the scales.

3.4. Filtering as an inverse problem

The filtering can be seen as an inversed problem. Indeed,
we want to reconstruct an image from the detected wavelet
coefficient. The problem of reconstruction (Bijaoui & Rué
1995) consists in searching a signal S such that its wavelet
coefficients are the same as those of the detected structure.
By noting T , the wavelet transform operator, and P the
projection operator in the subspace of the detected coeffi-
cients (i.e. set to zero all coefficients at scales and positions
where nothing where detected), the solution is found by
minimization of

J(S) =‖W − (P ◦ T )S ‖ (18)

where W represents the detected wavelet coefficients of
the image I. A complete description of algorithms for min-
imization of such an equation can be found in Bijaoui &
Rué (1995). In practice, compared to the previous algo-
rithm, the main modification is the introduction of the
adjoint wavelet transform operator, replacing the step 8
(reconstruction).

3.5. Conclusion

A simple thresholding generally provides poor results.
Artifacts appear around the structures, and the flux is not
preserved. The multiresolution support filtering requires
only a few iterations, and preserves the flux. The use of the
adjoint wavelet transform operator instead of the simple
coaddition of the wavelet scale for the reconstruction (step
8 of the algorithm) suppresses the artifacts which may ap-
pear around objects. In fact, the algorithm is analogous
to minimizing the Eq. (18). The use of the Van Cittert al-
gorithm for minimization of J leads to the modified mul-
tiresolution support filtering method. Other approaches
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Fig. 3. Top left and right, convolution of the noisy image with a Gaussian with a standard deviation equal to 3 and 5 respectively.
Bottom left, filtered image using a sigma clipping on each wavelet scale, and a 10 sigma detection. Bottom right, filtered image
using an hypothesis of local Gaussian noise, and a 10 sigma detection

for the minimization can also be used (conjugate gradi-
ent, etc.). The Van Cittert algorithm is not optimal for
the time computation, but it has the advantage of allowing
us to add constraints during the iterations. The positivity
is a strong constraint which should be used. Other addi-
tional prior knowledge can be added. For instance, such
prior knowledge could be in the form of a star position
catalog, bad pixel positions, a given position where we ex-
pect the object to be located, or constraints on the size of
the object. Hence the multiresolution constraint allows us
to integrate into the same data structure other informa-
tion sources (catalogs, images, etc.) and prior knowledge
(positions, object sizes, etc.), in a way which facilitates
subsequent image processing operations. In the most gen-
eral case, we do not have such prior information available,
so the multiresolution support is computed from the given
input image and its noise properties.

Partial restoration can also be considered. Indeed, we
may want to restore an image which is background free,
objects which appears between two given scales, or one
object in particular. Then, the restoration must be per-
formed without the last smoothed array for a background
free restoration, and only from a subset of the wavelet co-
efficients for the restoration of a set of objects (Bijaoui &
Rué 1995).

4. Noise models comparison

Figure 2 (left) shows a simulated image of a galaxy cluster.
Two point sources are superimposed (on the left of the
cluster), a cooling flow is at the center, a substructure
on its left, and a group of galaxies at the top. From this
image, a “noisy” images has been created (Fig. 2 (right)).
The mean background level is equal to 0.1 events per pixel.
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Fig. 4. Results of the filtering using the method based on the histogram autoconvolutions. Left, image obtained with a confidence
level equal to 1e − 3 (which is equivalent to a 3.09 sigma detection for the case of Gaussian noise), and right, image obtained
with a confidence level equal to 10−4 (3.72σ Gaussian equivalence)

This corresponds typically to X-ray cluster observations.
In the noisy image, the maximum value is equal to 23
events. The background is not very relevant. The problem
in this kind of images is the small number of photons per
object. It is very difficult to extract any information from
them.

Figure 3, top left and top right, shows the filtering of
the image by convolving the noisy image by a Gaussian,
with a standard deviation equal to 3 and 5 respectively.
Using the Anscombe transform, we were unable to obtain
an image with a reasonable quality. It seems that this
transform should only be used in the condition defined
in Murtagh et al. (1995), i.e. with a minimum number of
photons equal to 30 per pixel. In the case of very low
photons count, the results are very poor.

Figure 3 bottom left shows the result after a filtering
using a sigma clipping on each wavelet scale, and a ten
sigma detection. Figure 3 bottom right shows the filtering
using an hypothesis of local Gaussian noise, and a ten
sigma detection. For both, even at a detection level of ten
sigma, the filtered image presents residual noise.

Figure 4 shows the results of the filtering using the
method based on the histogram autoconvolutions with two
different confidence levels. Figure 4 left corresponds to a
confidence interval of 10−3 (which is equivalent to a 3.09
sigma detection for the case of Gaussian noise), and Fig. 4
right, with a confidence level equal to 10−4 (3.72 Gaussian
equivalence). Even if the two point sources could not have
been distinguished by eye in the noisy image, they have
been detected and correctly restored.

Figure 5 shows the result of the filtering with differ-
ent background levels. The detections in the wavelet scale
were done using ε = 10−4. From left to right and top to

bottom, the background level was respectively equal to
0.1, 0.5, 1, 2 counts per pixel. If the background level is
high, there is more noise, and we see that the second source
disappears when the background level increases, which is
normal behavior.

The best filtering is clearly obtained using the method
based on wavelet transform and the histogram auto-
convolutions. For other methods which use the wavelet
transform, we did not use Monte Carlo simulations and
the exact level for signal detection is difficult to find.
Furthermore, the level is certainly not the same for the
whole scale. For this reason, a simple Gaussian filtering
seems to be better.

5. Detected structure analysis

Once the significant wavelet coefficients have been de-
tected, they can be grouped into structures (a structure is
defined as a set of connected wavelet coefficients at a given
scale), and each structure can be analyzed independently.
Interesting information which can be easily extracted from
an individual structure includes the first and second order
moments, the angle, the perimeter, the surface, and the
deviation of shape from sphericity (i.e. 4π Surface

Perimeter2 ). From
a given scale, it is also interesting to count the number
structures, and the mean deviation of shape from spheric-
ity.

In order to visualize the structures, we can create an
image by plotting a contour for each detected structure.
This provides a compact way to visualize the multireso-
lution support. Figure 6 (left) shows the contours of the
multiresolution support of the simulated image of Sect. 4.
Figure 6 (right) shows the contours of the same simu-
lated field, but the objects of the simulated noisy image
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Fig. 5. Filtering of the simulated image with different background levels. From left to right and top to bottom, the background
level was respectively equal to 0.1, 0.5, 1, 2 counts per pixel

contain less flux (the maximum of the image is equal to
seven counts), while the background is the at the same
level (0.1 count per pixel). We can easily see that in this
case, the two point sources have disappeared. Both detec-
tion were done with ε = 10−4.

6. A2390 cluster filtering

The cluster of galaxies A2390 is located at a redshift of
0.231. Figure 7 shows an image of this cluster, obtained
with ROSAT satellite. The resolution is one arc second
per pixel, with a total number of 13506 photons for ex-
posure time of approximately 8 hours. The background
level is around 0.04 photons per pixel. It is clear that the
raw data are not usable, and we need to filter it in order
to extract the information. The standard method consists
in convolving the image by a Gaussian. Figure 8 shows
the result after applying this convolution (Gaussian with

a full width at half maximum equal to 5′′, which is ap-
proximatively the size of the instrumental response). The
smoothed image shows structure, but we see also that a lot
of noise remains, and it is difficult to assign a significance
to these structures. Figure 9 shows the filtered image by
the histogram based wavelet method. The noise has been
eliminated, and we see that the wavelet transform has en-
hanced weak structures in the X-ray emission, which could
explain the gravitational amplification phenomena which
have been observed in the optical domain (Pierre et al.
1996).

7. Conclusion

Simulations have shown that the best filtering approach
for images containing Poisson noise with few events is the
method based on the histogram autoconvolutions. This
method allows one to give a probability that a wavelet



J.-L. Starck and M. Pierre: Structure detection in low intensity X-ray images 405

Fig. 6. Left, multiresolution support of the simulated image (see Fig. 2). Right, multiresolution support of the same simulated
field, but all objects contains less flux. The maximum of the noisy image is equal to 7

Fig. 7. ROSAT image of the cluster A2390

coefficient is due to noise. No background model is needed,
and simulations with different background levels have
shown the reliability and the robustness of the method.
Other noise models in the wavelet space lead to the prob-
lem of the significance of the wavelet coefficient. A ten
sigma detection was not strong enough in our simulation
to produce a good filtered image. In this case, only Monte

Carlo simulations can allow one derivation of a good de-
tection level, and then, a new problem appears of defin-
ing the correct background. The main advantage of the
histograms based method is its independence of the back-
ground.
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Fig. 8. A2390 ROSAT image filtered by a standard method (convolution with a Gaussian)

Fig. 9. A2390 ROSAT image filtered by the wavelet based method
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